High hardness in the biocompatible intermetallic compound β-Ti$_3$Au

Eteri Svanidze,1 Tiglet Besara,2 M. Fevsi Ozaydin,3 Chandra Sekhar Tiwary,4 Jiakui K. Wang,1 Sruthi Radhakrishnan,4 Sendurai Mani,5 Yan Xin,2 Ke Han,2 Hong Liang,7 Theo Siegrist,2 Pulickel M. Ajayan,4 E. Morosan1,4*

The search for new hard materials is often challenging, but strongly motivated by the vast application potential such materials hold. Ti$_3$Au exhibits high hardness values (about four times those of pure Ti and most steel alloys), reduced coefficient of friction and wear rates, and biocompatibility, all of which are optimal traits for orthopedic, dental, and prosthetic applications. In addition, the ability of this compound to adhere to ceramic parts can reduce both the weight and the cost of medical components. The fourfold increase in the hardness of Ti$_3$Au compared to other Ti–Au alloys and compounds can be attributed to the elevated valence electron density, the reduced bond length, and the pseudogap formation. Understanding the origin of hardness in this intermetallic compound provides an avenue toward designing superior biocompatible, hard materials.

INTRODUCTION

In addition to numerous applications in the industrial, automotive, and aerospace fields, Ti has been widely used for implant devices that replace patients’ hard tissues (1, 2). A number of in vivo and in vitro experiments with various grades of Ti concluded that commercially pure Ti is a highly biocompatible material due to the spontaneous buildup of an inert and stable oxide layer (1,3). Additional properties that make Ti suitable for biomedical applications include its high strength-to-weight ratio (4, 5) and low ion formation levels in aqueous environments (1). Moreover, Ti is one of a few materials capable of osseointegration—the mechanical retention of the implant by the host bone tissue—which stabilizes the implant without any soft tissue layers between the two (6). These properties enable the wide use of Ti for devices, such as artificial knee and hip joints, screws and shunts for fracture fixation, bone plates, pacemakers, and cardiac valve prostheses (7, 8). Not surprisingly, the dental applications of Ti are just as common, including implants and their components, such as inlays, crowns, overdentures, and bridges (1,9–12).

However, pure Ti is not strong enough for a number of medical devices (13, 14), thus necessitating the development of superior alloys (15–19). Although hardness can be improved by alloying Ti with another element (1), care must be taken to preserve biocompatibility. Previously, a twofold increase in hardness has been achieved by alloying Ti with Cu or Ag (19–22). The use of an alloying element with the same valence as Cu and Ag, but with higher mass density, should result in a higher valence electron density (VED), which would likely lead to higher bond strength and, consequently, enhanced hardness (23, 24). This finding suggests that Au is a suitable alloying candidate to increase the hardness in Ti binary alloys, given its nearly twofold density increase over Cu or Ag (19–22). The current wide use of Au-based implant devices (25–28) is testament to its biocompatibility and corrosion resistance (10).

Biomedical applications of both Ti-rich and Au-rich alloys have been previously explored in detail (19, 25, 29, 30). Although hardness values showed modest increase in both these regimes of the Ti–Au solution [Fig. 1, open circles, reproduced from previous studies (25, 29, 30)], the hardness was comparable to that of Ti–Ag and Ti–Cu alloys (19–22). Here, we present evidence that the hardness varies nonmonotonously in the Ti–Au alloys, and a drastic increase is registered at an intermediate composition, for the cubic compound β-Ti$_3$Au (Fig. 1, full circles). Further evidence from wear experiments reveal that this enhanced hardness is associated with a low coefficient of friction (COF). Experimental observations and theoretical calculations point to three main factors that contribute to the high hardness in β-Ti$_3$Au: the cubic structure with short Ti–Au bonds, the high VED, and a pseudogap evident in the electronic density of states (DOS).

RESULTS AND DISCUSSION

Hardness measurements of the Ti$_{1-x}$Au$_x$ alloys reveal a nonmonotonous change with x (Fig. 1, circles), with hardness values in the composition range 0.22 ≤ x ≤ 0.35, which are about three to four times higher than the hardness value of pure Ti. The maximum hardness of ≈800 HV (Vickers hardness) is reached for x = 0.25, for which the cubic compound Ti$_3$Au forms, in two distinct phases, α and β, with the latter stabilized by the presence of small amounts of carbon, nitrogen, or oxygen (31). This maximum hardness value exceeds that of most biocompatible materials [and even the maximum hardness value of some structural materials, such as pearlitic steels (32, 33)] and is similar to that of both drawn pearlite and high-carbon martensitic steels (34). Although other metallic alloys and compounds, such as WC, BN, and high-carbon steels show higher hardness values (35–41), they are often not desirable for medical applications because of their high toxicity (42, 43). However, both Ti and Au are biocompatible and have high resistance to in vivo corrosion, suggesting that the resulting alloys would be suitable for biomedical applications (1, 3, 10). Not surprisingly, biocompatibility and corrosion resistance have been confirmed in the Ti$_{1-x}$Au$_x$ alloys for x ≤ 0.40 (Fig. 1, open circles) (44). Here, relative cell viability was examined, as described in Methods. Remarkably, the relative cell viability values 98.7% (for x = 0.25) and 95.9% (for x = 0.50) were found to be much higher than 33.8% in the case of pure Ti. The exceptional biocompatibility of these Ti$_{1-x}$Au$_x$ alloys makes them particularly well suited for a variety of medical applications. To compare the mechanical properties of the...
RESEARCH ARTICLE

Ti$_{0.75}$Au$_{0.25}$ alloys with materials typically used for medical applications, we added a hardness versus mass density diagram (45) in Fig. 1 (bottom axis). Although Ti$_{0.75}$Au$_{0.25}$ (or Ti$_3$Au) displays high hardness, its mass density is comparable to that of other commonly used implant materials [Fig. 1, squares (37, 46)]. Moreover, among intermetallic compounds (47–54), Ti$_3$Au has significantly enhanced hardness while preserving its biocompatibility. The only other intermetallic compound with a similar hardness value is Ti$_3$Ir, the biocompatible properties of which remain unknown.

Among the Ti–Au binary compounds, Ti$_3$Au is the only cubic one, which is consistent with high mechanical stability and, therefore, high hardness. A three-dimensional bonding network (similar to that in cubic compounds) is deemed one of the most important parameters enhancing hardness (55, 56). This correlation between the crystal structure and hardness is evident from several known Ti-based compounds: Cubic Ti$_3$Sn and Ti$_3$Ir (12-fold coordinated Ti) and hexagonal Ti$_3$Al exhibit hardness values comparable to that of pure Ti (Fig. 1, circles). Notably, Ti$_3$Au forms in two cubic crystal structures: α-Ti$_3$Au (Pm3m, Cu$_3$Au type; Fig. 2A) and β-Ti$_3$Au (Pm3n, Cr$_3$Si type; Fig. 2B). β-Ti$_3$Au is expected to have higher hardness, considering the Ti coordination (14) and its Ti–Au bond length $d_{Ti-Au} = 2.84$ Å (57) being shorter than that of the α-Ti$_3$Au phase [$d_{Ti-Au} = 2.93$ Å (31)].

A full theoretical understanding of hardness remains challenging because of the inherently complex relationship between elasticity and toughness that defines hardness (58). In alloys, in particular, hardness mostly depends on the underlying crystal structure, atomic bonding, and microstructure (23), making the structural analysis of paramount importance (59, 60). Powder x-ray diffraction (XRD) analysis (Fig. 2C) reveals that Ti$_{0.75}$Au$_{0.25}$ consists of a majority phase β-Ti$_3$Au (Pm3n; Fig. 2B) (57) along with minute amounts of α-Ti$_3$Au (Pm3m; Fig. 2A) (less than 0.6%) (57) and α-Ti (less than 4%). The majority phase β-Ti$_3$Au has a lattice constant $a \approx 5.1$ Å, whereas the minority phase β-Ti$_3$Au has a smaller lattice constant $a \approx 4.1$ Å (31). Because the formation energy of a Burgers vector (a vector denoting the magnitude and direction of the lattice distortion resulting from a dislocation) is proportional to the unit cell parameter, the compound with the larger unit cell parameter β-Ti$_3$Au is expected to have a higher hardness. Furthermore, the two phases differ profoundly in the atomic environment types (AETs) of Au and Ti. In the α-Ti$_3$Au phase (Fig. 2A), both Ti and Au are 12-fold coordinated with a cubic closest packed (ccp) arrangement, whereas Ti is surrounded by 8 Ti and 4 Au atoms. By contrast, in the β-Ti$_3$Au phase (Fig. 2B), the two atoms have very different AETs. Au is 12-fold coordinated with a 12-vertex Frank-Kasper polyhedron, whereas Ti is 14-fold coordinated with a 14-vertex Frank-Kasper polyhedron. However, Ti is still 12-fold coordinated but now with an icosahedron AET formed by Ti (Fig. 2B, bottom left), which implies shorter bond lengths. Nevertheless, Ti is 14-fold coordinated with a 14-vertex Frank-Kasper polyhedron composed of 4 Au and 10 Ti atoms (Fig. 2B, bottom right). As mentioned above, the key differences in the AETs of Au and Ti (coordination number, bond lengths) are consistent with the higher hardness of β-Ti$_3$Au compared to α-Ti$_3$Au. Often, hardness strongly depends on plastic deformation resulting from the creation and motion of dislocations and defects (23, 61). In α-Ti$_3$Au, both atoms have the same AETs, and it is therefore reasonable to assume that this gives rise to low shear strength, stemming from the low energy needed to create and move dislocations and defects (23). In the β-Ti$_3$Au phase, on the other hand, the different
Table 1. Composition and wear test summary for the Ti\textsubscript{1-x}Au\textsubscript{x} alloys.

<table>
<thead>
<tr>
<th>x</th>
<th>Phase-determined from TEM</th>
<th>Phase-determined from XRD</th>
<th>Ti\textsubscript{1-x}Au\textsubscript{x} disc</th>
<th>Diamond-SiC disc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wear volume (mm3)</td>
<td>Wear type</td>
</tr>
<tr>
<td>0</td>
<td>Reference (commercial specimen)</td>
<td></td>
<td>0.038</td>
<td>Abrasive, adhesive</td>
</tr>
<tr>
<td>0.25</td>
<td>(\beta)-Ti\textsubscript{3}Au</td>
<td>(\beta)-Ti\textsubscript{3}Au + (\alpha)-Ti\textsubscript{3}Au + (\alpha)-Ti</td>
<td>0.012</td>
<td>Abrasive, adhesive</td>
</tr>
<tr>
<td>0.33</td>
<td>(\beta)-Ti\textsubscript{3}Au + (\beta)-TiAu</td>
<td>(\alpha)-Ti\textsubscript{3}Au + (\beta)-Ti\textsubscript{3}Au + (\beta)-TiAu</td>
<td>0.010</td>
<td>Abrasive, adhesive</td>
</tr>
<tr>
<td>0.50</td>
<td>(\beta)-TiAu + (\alpha)-Ti</td>
<td>(\beta)-TiAu + (\alpha)-Ti + (\alpha)-Ti\textsubscript{3}Au</td>
<td>0.017</td>
<td>Adhesive</td>
</tr>
</tbody>
</table>

Table 2. Summary of crystallographic and electronic parameters of the Ti–Au phases.

<table>
<thead>
<tr>
<th>Space group</th>
<th>(d\textsubscript{Ti-Au} (\text{Å}))</th>
<th>VED ((\text{Å}^{-3}))</th>
<th>Pseudogap</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)-Ti\textsubscript{3}Au</td>
<td>Pm3m</td>
<td>2.93237 (31)</td>
<td>0.18</td>
</tr>
<tr>
<td>(\beta)-Ti\textsubscript{3}Au</td>
<td>Pm3n</td>
<td>2.84478 (57)</td>
<td>0.20</td>
</tr>
<tr>
<td>(\beta)-TiAu</td>
<td>Pmma</td>
<td>2.79248 (71)</td>
<td>0.15</td>
</tr>
<tr>
<td>TiAu\textsubscript{2}</td>
<td>I4/mmm</td>
<td>2.80056 (72)</td>
<td>0.12</td>
</tr>
<tr>
<td>TiAu\textsubscript{4}</td>
<td>I4/m</td>
<td>2.85050 (73)</td>
<td>0.10</td>
</tr>
</tbody>
</table>

AETs of Au and Ti introduce higher energy barriers for any dislocation movement; that is, atoms cannot easily slide and break as well as reform bonds, resulting in increased hardness. One may argue further that the presence of small amounts of minority phases \(\alpha\)-Ti\textsubscript{3}Au and \(\alpha\)-Ti may favorably interact with \(\beta\)-Ti\textsubscript{3}Au to further inhibit dislocation formation and dislocation motion, thus increasing the hardness and toughness of the majority phase \(\beta\)-Ti\textsubscript{3}Au.

To investigate the microstructure of the Ti\textsubscript{0.75}Au\textsubscript{0.25} sample and its consistency with the x-ray analysis, HRTEM and SAD were performed for different crystallographic orientations. The HRTEM images along [111] (Fig. 2D) and [100] (Fig. 2E), together with the SAD images for the [111] (Fig. 2F) and [102] (Fig. 2G) orientations, are shown in Fig. 2 (H and G) and reveal the atomic arrangement in both real space (HRTEM) and reciprocal space (SAD) in \(\beta\)-Ti\textsubscript{3}Au. Similar TEM and XRD analyses were performed on several other Ti\textsubscript{1-x}Au\textsubscript{x} alloys, with the results summarized in Table 1. For all compositions, the main crystallographic phase is confirmed by both XRD and TEM data.

In addition to the crystal structure, two other factors point to the high hardness in Ti\textsubscript{0.75}Au\textsubscript{0.25}; high VED and pseudogap formation. In metallic materials, strong atomic bonding has been suggested to improve phase stability and hardness (23, 24), and this can be quantified by examining the value of the VED. The VED value for \(\beta\)-Ti\textsubscript{3}Au is 0.20 \(\text{Å}^{-3}\), which is higher than that of any other Ti–Au binary (Table 2). This is consistent with \(\beta\)-Ti\textsubscript{3}Au being the hardest among the Ti–Au alloys. Another possible origin of the high hardness of \(\beta\)-Ti\textsubscript{3}Au is the reduction in the DOS at the Fermi level \(E\textsubscript{F}\), which has been referred to as a pseudogap (62, 63). It has been suggested that the pseudogap formation stabilizes the phase and, consequently, improves the hardness (63). Typically, to significantly affect the crystallographic phase, the pseudogap must have a width \(W\) of 0.5 to 1.5 eV and a relative height ratio \(H/H\textsubscript{0}\) \(> 0.5\), where \(H\) and \(H\textsubscript{0}\) represent the DOS at the top and bottom of the pseudogap, respectively (63). \(\beta\)-TiAu, TiAu\textsubscript{2}, and \(\beta\)-Ti\textsubscript{3}Au all exhibit pseudogap-like features around the Fermi level \(E = 0\) in Fig. 3). The pseudogap of \(\beta\)-Ti\textsubscript{3}Au is the most pronounced of all the studied Ti–Au compounds (Fig. 3, inset), with \(W \approx 1\) eV and \(H/H\textsubscript{0} \approx 4\), a result that reinforces the experimental observation of the highest hardness in \(\beta\)-Ti\textsubscript{3}Au.

Together with hardness, the lifetime of a material has to be considered in determining its applicability toward medical components. The lifetime of a component in vivo is determined partially by its component’s wear rate. In particular, knee and hip replacements currently last approximately a decade, making additional component replacements necessary (45). A comparison of the time-dependent COF in Ti\textsubscript{1-x}Au\textsubscript{x} \((x = 0, 0.25, 0.30,\) and 0.50) alloys is shown in Fig. 4A. The reference sample is Ti (blue, \(x = 0\)), with an average COF close to 0.35, which persists for about 700 s. The three Ti\textsubscript{1-x}Au\textsubscript{x} alloys, however, show
Fig. 4. Wear analysis of Ti$_{1-x}$Au$_x$ alloys against a diamond-SiC disc. (A) COF as a function of time for $x = 0, 0.25, 0.30,$ and 0.50. Inset: An alumina container showing that Ti$_{1-x}$Au$_x$ adheres to this ceramic component. (B) Wear volumes of Ti$_{1-x}$Au$_x$ (dashed) compared to diamond-SiC (solid).

Fig. 5. SEM images of pin and disc wear tests. (A, C, E, and G) Ti reference ingot (A), Ti$_{1-x}$Au$_x$ pins for (C) $x = 0.25,$ (E) $x = 0.30,$ and (G) $x = 0.50.$ (B, D, F, and H) Corresponding wear tracks on the diamond-SiC disc. Red rectangles (right panels) identify the regions of contact between the disc and the pin. For the (E) and (F) pair, there is little wear on both surfaces, indicating the wear resistance of the Ti$_{0.75}$Au$_{0.25}$ sample.

CONCLUSIONS

The mechanical properties of the intermetallic compound β-Ti$_3$Au suggest that this material is well suited for medical applications where Ti is already used, with some examples including replacement parts and components (both permanent and temporary), dental prosthetics, and implants. The fourfold increase in hardness, as compared with pure Ti, renders β-Ti$_3$Au as the hardest known biocompatible intermetallic compound. The wear properties of β-Ti$_3$Au indicate that this compound has a COF that is four times less than that of Ti, resulting in the reduction of the wear volume by 70%, which will ensure longer component lifetime and less debris accumulation. Moreover, the ability to adhere to a ceramic surface will result in reducing both the cost and the weight of these components.

The high hardness in β-Ti$_3$Au can be attributed to three main factors: (i) the cubic crystal structure with inherently short Ti–Au bonds and high (14) Ti atomic coordination, (ii) the high VED, and (iii) the pseudogap formation. Between the two cubic Ti$_3$Au compounds, the Ti–Au bond length is smaller for the β phase ($d_{\text{Ti–Au}} = 2.84478$ Å).
compared to the α phase ($d_{\text{Ti-Au}} = 2.93237 \text{ Å}$). Together with the more complex crystallographic environments of both Ti and Au in β-Ti$_x$Au, this inhibits dislocations and results in high hardness in this particular compound. Understanding the factors that influence the hardness of β-Ti$_x$Au provides insights for improving the existing biocompatible alloys and designing new biocompatible materials with superior mechanical properties.

METHODS

Alloys of Ti$_{1-x}$Au, were prepared by arc melting Ti (Cerac, 99.99%) and Au (Cerac, 99.99%) in stoichiometric ratios, with mass losses of no more than 0.3%. To ensure homogeneity, the samples were remelted several times. Given that Ti alloys are frequently heat-treated to improve both hardness and ductility, annealing studies were carried out for the Ti–Au system. However, the use of different annealing cycles, similar to those used for other Ti-based alloys (65), resulted in minimal changes in the hardness compared to the as-cast samples. This might be caused by variation in microstructure homogeneity, which can mask the true annealing effects. The hardness of the arc-melted samples made it virtually impossible to grind these samples, which rendered powder XRD experiments difficult. Therefore, XRD data were collected at room temperature off the cross section (about 3 mm in diameter) of cut and polished specimens using a custom four-circle Huber diffractometer with a temperature of 300 °C.

REFERENCES AND NOTES

Acknowledgments
Funding: The work at Rice University (E.M. and E.S.) and part of the work at the National High Magnetic Field Laboratory (NHMFL) (T.B. and T.S.) was supported by the NSF (DMR-1506704). The work at the NHMFL (T.B., Y.X., K.H., and T.S.) was partially supported by the NSF Cooperative Agreement (DMR-1157490) and the State of Florida. T.B. and T.S. were partially supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under award DE-SC0008832. Work at the Texas A&M University (H.L. and M.F.O.) was partially sponsored by the Turbomachinery Research Laboratory. The Z-contrast facilities were supported by the Florida State University Research Foundation. Author contributions: E.M. and E.S. designed the study. E.S. prepared the samples and performed the data analysis. E.M. and E.S. wrote the manuscript with contributions from all authors. T.B. and T.S. were responsible for x-ray measurements and structural characterization. C.S.T. and P.M.A. performed HRTEM analysis. M.F.O. and H.L. carried out tribological experiments. S.R. and S.M. evaluated the cytotoxicity of the samples. Y.X. and K.H. performed HVF tests. J.K.W. performed band-structure calculations. Competing interests: The authors declare that they have no competing interests.

Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper. Additional data related to this paper may be requested from the authors.

Submitted 3 March 2016
Accepted 28 June 2016
Published 20 July 2016
10.1126/sciadv.1600319

High hardness in the biocompatible intermetallic compound β-(Ti$_3$Au)

Eteri Svanidze, Tiglet Besara, M. Fevsi Ozaydin, Chandra Sekhar Tiwary, Jiakui K. Wang, Sruthi Radhakrishnan, Sendurai Mani, Yan Xin, Ke Han, Hong Liang, Theo Siegrist, Pulickel M. Ajayan and E. Morosan (July 20, 2016)

Sci Adv 2016, 2:
doi: 10.1126/sciadv.1600319

This article is published under a Creative Commons license. The specific license under which this article is published is noted on the first page.

For articles published under CC BY licenses, you may freely distribute, adapt, or reuse the article, including for commercial purposes, provided you give proper attribution.

For articles published under CC BY-NC licenses, you may distribute, adapt, or reuse the article for non-commercial purposes. Commercial use requires prior permission from the American Association for the Advancement of Science (AAAS). You may request permission by clicking here.

The following resources related to this article are available online at http://advances.sciencemag.org. (This information is current as of March 9, 2017):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://advances.sciencemag.org/content/2/7/e1600319.full

This article cites 52 articles, 2 of which you can access for free at:
http://advances.sciencemag.org/content/2/7/e1600319#BIBL