PLANT SCIENCES

Reactive oxygen species leave a damage trail that reveals water channels in Photosystem II

Daniel A. Weisz,1,2 Michael L. Gross,2 Himadri B. Pakrasi1*

Photosystem II (PSII), a unique membrane-bound oxidoreductase, catalyzes light-driven oxidation of water to molecular oxygen. Although high-resolution structures of PSII are known, the exact path of the substrate water molecules to the catalytic Mn4CaO5 center within the PSII complex remains poorly understood. PSII produces reactive oxygen species (ROS), responsible for the frequent damage and turnover of this megacomplex that occur under physiological conditions. Such ROS are known to specifically modify PSII proteins. Using high-resolution tandem mass spectrometry, we identified oxidative modifications on 36 amino acid residues on the lumenal side of PSII, in the core PSII proteins D1, D2, and CP43 of the cyanobacterium Synechocystis sp. PCC 6803. Remarkably, these oxidized residues clustered into three nearly continuous formations, tracking the pathways of ROS diffusion from the manganese center all the way out to the surface of PSII. We suggest that these profiles of oxidized residues reveal the locations of water channels within PSII. Our results provide the most comprehensive experimental evidence to date of physiologically relevant oxidized residues in PSII and illuminate three possible channels for water between the catalytic Mn cluster in the PSII complex and the bulk medium around it.

INTRODUCTION
Photosystem II (PSII), an oxidoreductase found in the thylakoid membrane of organisms that perform oxygenic photosynthesis. The fully assembled PSII complex consists of approximately 20 protein subunits and multiple redox-active cofactors that allow PSII to function as a catalyst for the light-driven oxidation of water and concomitant reduction of plastoquinone (1–4). This conversion of sunlight to chemical energy initiates the photosynthetic electron transport chain and sustains nearly all life on Earth.

The active site for water oxidation, a Mn4CaO5 cluster (henceforth Mn cluster), is buried within the PSII complex near the lumen-membrane interface (5). This buried position limits water access to the active site, a key feature that promotes the reaction. When PSII is modified to allow an unrestricted flow of water to the active site, incomplete water oxidation occurs, forming hydrogen peroxide (H2O2) that is reduced to the harmful hydroxyl radical (HO•) (6–9). The buried active site minimizes, but does not completely prevent, such a side reaction pathway, allowing some re-active oxygen species (ROS) to be produced under physiological conditions (10, 11). ROS-induced damage to PSII is the major mechanism believed to be responsible for the frequent PSII turnover that occurs in cells (2, 12), and oxidative modifications of PSII residues near the Mn cluster have been detected (11, 13–17).

Although PSII is the only known enzyme capable of complete water oxidation, it is not the only enzyme for which water is more than just a solvent. Aquaporins transport water across membranes; cytochrome c oxidases produce water as a by-product while pumping protons; and the haloalkane dehalogenases use specific interactions with carefully placed internal water molecules to achieve catalysis. For these and many other enzymes, it is becoming increasingly clear that water dynamics is exquisitely tuned by the protein scaffold to fit the enzyme’s function. For example, specific channels regulate the accessibility, geometrical positioning, and flow rate of water molecules within the abovementioned enzymes and in many others (18–21).
RESULTS
To track the oxidative damage trail, we used bottom-up proteomics on a high-performance mass spectrometer. Briefly, this method involves digestion of the protein sample into peptides, chromatographic separation of the peptides, and online injection into a mass spectrometer. Automated analysis of the MS data, combined with manual verification for rigor, enables confident identification of the peptide sequences in the sample. During the analysis of our MS data, we focused on the D1, D2, and CP43 subunits of PSII because these proteins are most closely associated with the Mn cluster (5), with additional targeted analysis of residues in the CP47 subunit, as described below. We obtained 35, 37, and 46% sequence coverage of the D1, D2, and CP43, respectively. Our coverage is appreciably higher than was typically reported for these proteins (44–47). In an earlier study of oxidative modifications in higher plant PSII, Frankel et al. (48) found 24, 27, and 26% coverage for D1, D2, and CP43, respectively. Our higher coverage can be attributed to the increased sensitivity and speed of the Q-Exactive (QE) Plus mass spectrometer we used, compared to the LTQ-FTICR, earlier Orbitrap, and MALDI-TOF instruments used previously. The high mass accuracy (~0.02 Da) of the product ion (MS/MS) spectra recorded on the QE enabled highly confident peptide identification and residue-level localization of posttranslational modifications to an extent not possible on earlier instruments lacking high mass accuracy for product ions formed in MS/MS. We were able to locate unambiguously all oxidative modifications shown below at the resolution of a single amino acid residue. Example product ion (MS/MS) spectra (shown in Fig. 1 and figs. S1 to S3) testify to the quality of the data obtained in this study (see table S1 for a list of the types of oxidative modifications included in the searches).

We obtained MS coverage of 472 residues on D1, D2, and CP43 in the MS analyses and identified oxidative modifications on 50 residues (11%) (tables S2 and S3; residue numbering follows the Synechocystis 6803 sequence unless otherwise noted). Of these 50 modified residues, 19 were detected only in the light-incubated samples (whereas only 7 were detected in the dark-incubated samples but not in the light-incubated samples). This finding strengthens the concept that PSII photochemistry leads to oxidative damage of its protein components. Of all the PSII proteins, D1 is believed to be the primary site of photodamage (1) and, as a result, is turned over the fastest (49). Vermaas and co-workers (49) found that in Synechocystis, D1, D2, and CP43 have increasing half-lives of ~1, 3.3 ± 1, and 6.5 ± 1.5 hours, respectively, with a longer half-life presumably reflecting a lower damage rate. Matching this trend, we found that D1 showed the most marked response to light incubation, with a 3-fold increase in the number of oxidized residues detected after light incubation, followed by D2 (2.5-fold increase), and, finally, CP43 (1.2-fold increase) (table S2). We note that, owing to the varying ionization efficiency of modified and unmodified forms of a peptide, our data did not allow us to quantify the fraction of a particular peptide that is modified (50).

Of the 50 oxidized residues, 36 are on the luminal side of PSII and 14 are on the cytosolic side. We focused our analysis on the 36 luminal-side residues because they are proximate to the Mn cluster. We mapped the oxidized luminal-side residues onto the 1.9 Å crystal structure of PSII from Thermosynechococcus vulcanus [Protein Data Bank (PDB): 3WU2] (5) (Fig. 2). This comparison is justified by the extremely high degree of conservation between PSII protein sequences of Synechocystis and T. vulcanus (and across all oxygenic photosynthetic organisms). The D1, D2, and CP43 proteins of these two organisms share 86, 90, and 87% sequence identity and 94, 99, and 94% sequence similarity, respectively. To be oxidized, a residue must have been exposed to ROS. As has been pointed out by Frankel et al. (13, 48), it is reasonable that surface-exposed residues could be oxidized by ROS in the bulk solvent, but buried oxidized residues should reflect the location of ROS production within the complex. Because the Mn cluster can produce ROS, we expected that the oxidized luminal-side residues would cluster particularly around this metal center, as has been observed in several studies (13–17).

Figure 3A locates the 36 luminal-side oxidized residues. Examination of these data shows that 13 of these residues are in the vicinity (within 15 Å) of the Mn cluster, but the remaining 23 are not (the full range of distances is 2 to 30 Å from the cluster). However, most of the oxidized residues lie in three nearly continuous formations ("arms") that are centered on the Mn cluster and radiate outward in different directions (although we note that the arm 2 group shows less continuity than arms 1 and 3) (Fig. 3, A and B). Arm 1 consists of D1 and D2 residues (and also several CP47 residues identified afterward, as described below); arm 2 consists of D1, D2, and CP43 residues; and arm 3 consists only of CP43 residues (Fig. 3B and table S2). To ensure that this distinct pattern is not skewed by limited MS coverage of lumen-side residues, we mapped all 255 lumen-side residues (unmodified and modified) identified in our study onto the crystal structure (Fig. 3C). This depiction clearly showed that a broad coverage of lumen-side residues was achieved, and the observed geometrical arrangement of the oxidized residues is not simply a quirk of limited MS coverage.

An explanation for the accessibility of ROS to these residues is that they line the walls of channels within PSII through which ROS are able to diffuse after their generation at the Mn cluster. The outermost oxidized residues of these arms are surface-exposed and in contact with bulk solvent (Fig. 3D); thus, these outer residues indicate near-continuous trajectories for water travel from the surface of PSII all the way to the Mn cluster (with the exception that the arm 2 residues extend to one amino acid length away from the surface). As mentioned above, water channels have long been believed to be important for efficient water oxidation in PSII, given the buried active site and the need to regulate water access to it, although experimental evidence for their locations has remained sparse. As mentioned above, HO• is the major ROS known to be produced at the Mn cluster (6, 11), and because of their similar size and hydrophilicity (43), diffusion pathways of HO• are likely to be favorable for water as well. We conclude that the three ROS channels identified in our study represent three possible water channels in PSII.

DISCUSSION
Comparison with channels identified in computational studies
We compared each of the channel systems that were identified in computational studies with the oxidized residue arms that we observed to identify any overlap. Some of the calculated channels are strikingly consistent with our results, whereas others are not (Fig. 4, tables 1 and S4, and movie S1). It should be kept in mind that the computational studies using static-structure calculations do not account for protein dynamics that could alter channel topology and that even the MD studies do not account for conformational changes known to occur during the Mn cluster’s S-state transitions (51). We refer mainly to the channel names in Ho et al. (23) and Vassiliev et al. (26, 27) in our analysis below, but see Table 1 for nomenclature correspondence with the other computational studies.

We found significant correspondence between the arm 1 residues and channel 3, a water channel identified by Vassiliev and co-workers (26, 27) through MD simulations (Table 1 and table S4). Channel 3
travels alongside arm 1 residues for around 20 Å, starting from the Mn cluster (Fig. 4B). The last ~15 Å interval of channel 3 angles away from arm 1 (although see below for additional correspondence from oxidized CP47 residues), whereas arm 1 continues to extend an additional 13 Å past the branching point. Channel 3 corresponds closely to channel “G” identified by another group using calculations on the static PSII crystal structure (24) (Table 1).

We also found significant correspondence between the arm 2 residues and channels “4a” and “4ai,” which are nearly identical water and dioxygen channels, respectively, identified by Vassiliev and co-workers
as a proton exit pathway (\(HO^\cdot\) barrier of \(\sim 22\) kcal/mol (\(s\)\)entially impermeable to water transport because of a high energetic
Using MD simulations, the back channel has been calculated to be es-

tions, although we obtained MS peptide coverage in those areas.

Channels 5, 1/1i, and 2 in the studies by Vassiliev
computational studies. The arm 3 pathway(s) may become accessible to

(26, 27) in their MD simulations (Table 1 and table S4). The arm 2 res-

dases we identified travel alongside channels 4a and 4ai for their initial

7 Å path from the Mn cluster and surround them for their final 18 Å
stretch to the surface of PSII, with a residue gap in their middle 8 Å
portion (Fig. 4A). Channels 4a and 4ai correspond closely to the “large
channel” (23), channel “ii” (22), and channel “B1” (24, 29, 30) identi-
ified by other groups in static-structure calculations and MD simula-

tions (Table 1).

The arm 3 residues do not overlap significantly with channels from
computational studies. The arm 3 pathway(s) may become accessible to
ROS diffusion as a result of conformational dynamics, including those
related to the S-state cycle transitions (51), which are not captured in the
computational studies.

The “back,” “broad,” and “narrow” channels (23), which correspond to
channels 5, 1/1i, and 2 in the studies by Vassiliev et al. (26, 27), re-
spectively, do not overlap strongly with our oxidized residue forma-
tions, although we obtained MS peptide coverage in those areas. Using
MD simulations, the back channel has been calculated to be es-

tentially impermeable to water transport because of a high energetic
barrier of \(\sim 22\) kcal/mol (27), and we would not expect diffusion of
\(HO^\cdot\) to be favored either. The broad channel is believed to function
as a proton exit pathway (52–54), consistent with our finding that it
is not conducive to ROS diffusion. The narrow channel has been pro-
posed to transport water to the active site (55). We obtained coverage of
11 of 17 of the narrow channel residues and found three that are ox-
idized (D1-E333, CP43-L336, and -M355). However, D1-E333 is a lig-
and to the Mn cluster, and thus, its proximity to this site does not assist
significantly in describing the unique path of the narrow channel. Our
results therefore do not strongly support water transport through the
narrow channel, but also do not strongly reject this possibility, given
the low level of oxidation that was observed and the fact that 6 of
17 channel residues remained uncovered by MS.

Comparison with earlier experimental studies of oxidized
PSII residues
In a study that appeared during the preparation of this manuscript,
Frankel et al. (11) identified oxidative modifications on D1 and D2 from
spinach PSII before and after light exposure, allowing us to compare our
results with theirs. This comparison should be valid because there is ex-
tremely high sequence conservation of the core PSII proteins between
these species: 84 and 85% sequence identity and 95 and 97% sequence
similarity for D1 and D2, respectively. The 19 lumen-side residues they
found to be oxidized occur in a pattern nearly identical to arm 1 and
include 7 residues that we also found oxidized (D1-T316, W317, M331,
H332, and E333 and D2-W328 and M329) (Fig. 5A). We note that D1-
H332, an inner-sphere ligand of Mn-1, is oxidized upon illumination in
both their study and ours. The authors hypothesized that Mn-1 is re-
ponsible for the reduction of \(H_2O_2\) to \(HO^\cdot\), leading to the oxidation of
D1-H332 followed by other residues (11).

In an earlier study from the same group using spinach PSII,
Frankel et al. (13) identified 10 oxidized CP47 residues in the vicinity
of arm 1. Because the positioning of these residues and their distance
from the Mn cluster do not clearly indicate a pathway leading away
from it, the authors did not propose one (13). However, our arm 1 res-
ides connect their oxidized CP47 residues to the Mn cluster, showing
that their results are part of a near-continuous path from the Mn cluster
to the PSII surface. We performed a targeted analysis of CP47 residues
in this region and found that two of these residues (CP47-M359 and
E364) are also oxidized in our results. Three additional residues in this
immediate vicinity are also oxidized (CP47-F362, M370, and T371). These
five residues extend the correspondence between the arm 1 res-

dues and channel 3 (26) and have been included in Fig. 4. The result-

ing arm 1 pattern shows a formation that originates at the Mn cluster,
radiates outward along the channel 3 path for \(\sim 20\) Å, and then di-
verges in two directions: The first continues an additional \(\sim 8\) Å along
the final segment of channel 3, and the second extends \(\sim 13\) Å along a
previously unidentified pathway (Fig. 5B). This formation seems to
describe two different water intake pathways that merge and lead to a
common destination.

Frankel et al. (13) also detected four oxidized CP43 residues within
15 Å of the Mn cluster and proposed that these residues constitute a part
of an ROS exit channel leading from the cluster to the surface of PSII.
However, they did not find additional oxidized residues that could
complete this channel and trace a path all the way to the surface of the
complex. In contrast, the oxidized CP43 residues we identified on
arm 3 do lead in a nearly continuous fashion all the way from the Mn
cluster to the surface of PSII, supporting and elaborating on the original
proposal by Frankel et al. (13). The arm 3 residues include two (T354
and M355) of the four identified in the earlier study. Superimposing
the two studies’ results shows that our arm 3 residues “fill in the gaps” be-
tween the oxidized CP43 residues in the study by Frankel et al. (13) and
the Mn cluster (Fig. 5C). Their results strengthen the geometrical for-
mation of the arm 3 residues we observed, showing a path of oxidized
residues that originates at the Mn cluster and widens somewhat as it radiates outward toward the surface.

Bricker and co-workers (48) studied their system further by performing synchrotron radiolysis of water and exposing their PSII sample to the resulting HO• species for 0, 4, 8, or 16 s. They reasoned that, for a residue to be oxidized in this experiment, it must be in contact with water, from which HO• are generated. Mapping buried oxidized residues on the PSII crystal structure could therefore indicate the location of water channels within PSII. Only 5 (14%) of the 36 oxidized residues that we detected were found to be oxidized in their study before the radiolysis experiment (0-s irradiation). After 4, 8, or 16 s of irradiation, however, they found oxidation at a total of 23 (64%) of the 36 oxidized residues that we detected. Of these, 14 are buried, indicating that at least 14 of the 23 buried oxidized residues that we detected are in contact with internal water molecules. As has been pointed out, water molecules are dispersed widely throughout the luminal side of PSII and most likely do not all comprise substrate channels, but this finding nonetheless supports our above conclusions that our oxidized residue formations represent water-filled pathways within PSII. This experiment uses HO• generated from solvent water that could travel inward toward the Mn cluster, whereas our experiment uses HO• generated in situ near the Mn cluster and that traveled outward. The correspondence between the results supports the assertion that the oxidized residue formations represent water channels connecting the Mn cluster with the bulk solvent.

We note that Wang (56) has recently reported that careful analysis of the PSII crystal structure 3ARC (5) reveals that around 10% of the residues are oxidized. Some of these residues overlap with the ones we have experimentally determined to be oxidized, and it is likely that at least some reflect oxidative damage incurred by PSII. However, as suggested in this report, many of these oxidized residues might have alternatively originated from the energetic x-rays used during crystallographic analysis and so do not necessarily reflect natural pathways of ROS diffusion away from the Mn cluster.

The PSII crystal structures reveal that there are four water ligands to the Mn cluster, and these are crucial for optimizing its hydrogen-bonding network to enable water oxidation (55, 57–59). All of these water molecules are positioned at the openings of arms 1 and 2, suggesting that these are the pathways that deliver these water molecules. The possibility of two distinct water delivery channels is also indicated by kinetic isotope exchange experiments (52, 60). The most current theoretical models of the water oxidation mechanism present two options for the key substrate water binding step during the S2→S1 transition (55). One option involves the substrate water forming an initial hydrogen bond with O4 and the other option with water-3 (W3). Both of these options are consistent with water delivery through arms 1 and 2 because arm 1 would deliver a water molecule to O4 and arm 2 to W3. The arm 2 residues that we detected correspond to the large channel system (23), which has been proposed to deliver the water molecule to W3 according to the latter option. Our results provide experimental evidence for the accessibility of this channel system. According to the former option, the narrow channel (23) has been proposed to deliver the substrate water molecule to O4. As mentioned above, we did not find strong evidence from oxidation patterns for the narrow channel, but we also cannot rule it out. However, our arm 1 pathway would deliver water molecules to the same end location at the Mn cluster as the narrow channel but via a different trajectory. We propose that water delivery to the O4 site could occur through arm 1 (which is highly similar to channel 3 in the study by Vassiliev et al. (26)) instead of the narrow channel. The Cl• ion bound ~6 Å from the Mn cluster is found within the arm 1 pathway and could partially restrict water access (Fig. 5B). Removal of Cl• is known to increase water accessibility to the active site, leading to incomplete oxidation and ROS formation (11, 61). Substrate water delivery occurring through the arm 1 pathway would thus provide a plausible explanation for how Cl• restricts water access to the active site to promote efficient water oxidation.

In conclusion, we have found that the total number of oxidized residues in the PSII proteins D1, D2, and CP43 increases by around 60% following light incubation. The D1 protein showed the most pronounced increase (threefold), consistent with the fact that it undergoes photodamage the fastest (1) and has the shortest half-life of all PSII proteins (30). The lumen-side oxidized residues we detected are arranged in three nearly continuous arms originating at the Mn cluster and radiating outward all the way to the surface of PSII. Because the major oxidizing species is likely HO•, with transport properties highly similar to those of water, our oxidized residue formations indicate accessible water channels within PSII. This study represents the most comprehensive experimental characterization to date of oxidized residues in PSII, providing new information and also synthesizing results from multiple earlier studies in a single experiment. Our arm 1 pathway matches a formation found recently in spinach PSII (11), our arm 3 pathway extends the description of a previously proposed

Table 1. Correspondence between channels identified in computational studies and this work. Channel names are listed followed by the species they were assigned to conduct in the original study. Channels in the same column are nearly identical unless otherwise noted.

<table>
<thead>
<tr>
<th>This work</th>
<th>Arm 1, partial</th>
<th>Arm 2</th>
<th>Arm 3, partial</th>
<th>Arm 3, partial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vassiliev et al. (26, 27)</td>
<td>1 H₂O 1i O₂</td>
<td>2 H₂O 3 H₂O 4a H₂O 4ai O₂</td>
<td>4b H₂O 4ci O₂ 5 H₂O⁺ X H₂O</td>
<td>–</td>
</tr>
<tr>
<td>Ho and Storing (23)</td>
<td>Broad† H⁺ Narrow‡ H⁺ – Large O₂ – – Back H₂O – –</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Murray and Barber (22)</td>
<td>iii H₂O/ H⁺ – – ii H₂O/ H⁺ – – i³ O₂ – –</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabdulkhakov et al. (24)</td>
<td>C H⁺ E, F H⁺ G H⁺ B₁ O₂ B₂ O₂ B₂⁺ O₂ A₁, A₂ H₂O D H⁺ –</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabdulkhakov et al. (29, 30)</td>
<td>C H⁺ E, F H⁺ G H⁺ B₁ H₂O/ O₂ B₂ H₂O/ O₂ B₂⁺ H₂O/ O₂ A₁, A₂ H₂O D H⁺ B₃ O₂</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The authors calculated a high (~22 kcal/mol) activation energy barrier for water travel through this channel, rendering it "virtually impermeable" to water (see main text for discussion). †Encompasses approximately two-thirds of channel 1 length. ‡Encompasses approximately three-fourths of channel 2 length. §Encompasses approximately one-half of channel 5 length. ¶Encompasses approximately three-fourths of channel 4ci length. ||Encompasses approximately two-thirds of channel 5 length.

Fig. 5. Comparison of lumen-side oxidized residues detected by Bricker and co-workers (11, 13) and in the current study. (A) Lumen-side oxidized residues detected on the D1 and D2 proteins in the study by Kale et al. (11) and in arm 1 in this study and their correspondence to channel 3 (26). (B) D1/D2 arm 1 residues in this study and the additional oxidized CP47 residues identified in a targeted analysis based on the results of Frankel et al. (13) and their correspondence to channel 3 (26, 27). (C) Oxidized residues in the arm 3 region detected by Frankel et al. (13) and in the current study. Note: Some additional lumen-side residues detected by Frankel et al. (13) that are not relevant to this discussion are not shown in this figure. Gray, residues only found oxidized by Bricker and co-workers (11, 13); orange (A) and purple (C), residues found oxidized in the studies by Kale et al. (11) or Frankel et al. (13), respectively, and the current study; red, D1/D2 arm 1 residues; yellow, Cl⁻ (B) and arm 3 residues (C); cyan, channel 3 (26); green, Mn cluster.
formation in a different study in spinach PSII (13), and our arm 2 pathway has not been proposed previously through experiment.

Channel 3 and channels 4a/4ai (26, 27) [large channel in the study by Ho and Styring (23)], which are putative water channels identified in computational studies, are highly similar to our arm 1 and arm 2 pathways, respectively (Table 1). Both are well-positioned to deliver ligated water molecules to their sites around the Mn cluster, and we propose that both serve this function. Previous proposals that the large channel plays this role are consistent with our results. Our results did not support a water delivery function for the back or broad channels, which is consistent with previous analyses using other methods (27, 52–54). The narrow channel has also been proposed to deliver water (55), and we cannot rule out this possibility, but we propose that our arm 1 pathway may serve this role instead by delivering water to the same end location at the Mn cluster. Water delivery through arm 1 provides a molecular basis for the increased water accessibility to the Mn cluster caused by Cl− removal, as Cl− is found within arm 1. Most of the arm 3 pathway does not overlap strongly with channels from computational studies, although Frankel and co-workers (13, 48) previously found overlapping oxidized residues. The functional significance of this pathway remains to be investigated.

MATERIALS AND METHODS
Cyanobacterial culture and PSII purification
The HT3 (His47) strain of Synechocystis 6803 was a gift from T. Bricker (Louisiana State University, Baton Rouge, LA) (62). The cultures were grown in BG11 medium at 30°C under 30-μmol photons m−2 s−1. Histidine-tagged PSII complexes were purified as described previously (63) with minor modifications and stored in 25% glycerol, 10 mM MgCl2, 5 mM CaCl2, 50 mM MES buffer (pH 6.0) (RB buffer).

Sample preparation and proteolytic digestion
Two His47 PSII samples (two biological replicates) consisting of 1 μg of chlorophyll a were precipitated using the 2D cleanup kit (GE Healthcare) to remove salt and detergent. For the light-incubated condition, the PSII samples were incubated at 30°C and 55-μmol photons m−2 s−1 for 6 hours before precipitation. The dark-precipitated samples were treated identically to the light-precipitated samples, but they were wrapped in aluminum foil during the incubation. After precipitation, the protein pellets were resuspended in 15 μl of 8 M urea. Disulfide reduction was performed by incubation in a final concentration of 2.5 mM tris-(2-carboxyethyl)phosphine for 30 min at 37°C. Alkylation of cysteines was then performed by the addition of iodoacetamide to a final concentration of 5 mM, with incubation at room temperature in the dark for 30 min. Digestion was performed in two stages: First, lysyl endopeptidase was added at around 1 μg/20 μg protein, followed by incubation for 2 hours at 37°C. After 2 hours, samples were diluted 1:8 in 100 mM tris (pH 8.5) and 10 mM CaCl2 trypsin buffer, with a final ratio of around 1-μg trypsin/20-μg protein, and incubated at 37°C overnight. The digestion was stopped by acidifying the sample to a final concentration of 1% formic acid. Samples were then analyzed by LC-MS/MS.

Liquid chromatography–tandem mass spectrometry
Samples were analyzed on a Q Exactive Plus mass spectrometer (Thermo Fisher), as described by Weisz et al. (64), with the following adjustments. For LC, a linear 82-min gradient from 2 to 43% solvent B (80% acetonitrile, 20% water, and 0.1% formic acid) was used, followed by a linear 30-min gradient from 43 to 98% solvent B, then a 5-min hold at 95% solvent B. Automatic gain control for MS/MS was set at 2.5 × 105 ions and a maximal injection time of 100 ms. Charge states other than 2 to 7 were excluded, and each sample was analyzed in triplicate.

Data analysis
The raw LC-MS/MS files were searched for Synechocystis PSII proteins using PEAKS (version 7.0, Bioinformatics Solutions Inc.), with the built-in decay fusion database used for false discovery rate calculation (65). The oxidative modifications listed in table S1 were included in the search, as well as carbamidomethylation (C, D, H, K, and E, peptide N terminus), +57.0215 Da; deamidation (N and Q), +0.9840 Da; acetylation of protein N terminus, +42.0106 Da; and carbamylay (K, peptide N terminus), +43.0058 Da. Additional search parameters are as follows: precursor-ion mass tolerance, 10.0 parts per million (ppm); fragment-ion mass tolerance, 0.02 Da; maximum three variable modifications per peptide; maximum three missed cleavages; maximum one nonpecific cleavage. Peptides were identified with a 0.1% false discovery rate (−10 log P ≥ 40). For every candidate oxidized residue that met the 0.1% false discovery threshold, product-ion (MS/MS) spectra were inspected manually to confirm data quality, and spectra were rejected if the oxidation could not be localized to a single residue, if the precursor-ion mass error was greater than 5.0 ppm, or if the peptide was a product of a nonpecific cleavage. MS data are available through Chorus (http://chorusproject.org), project #1388. Protein visualization was performed using VMD (66).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/3/11/eaaa3013/DC1
fig. S1. Example 1 of product-ion (MS/MS) spectra detected that identify oxidative modifications of PSII residues.
fig. S2. Example 2 of product-ion (MS/MS) spectra detected that identify oxidative modifications of PSII residues.
fig. S3. Example 3 of product-ion (MS/MS) spectra detected that identify oxidative modifications of PSII residues.
table S1. Oxidative modifications included as variable modifications in the MS database searches.
table S2. Oxidative modifications of PSII detected in this study.
table S3. List of oxidized peptides detected in this study.
table S4. Oxidized residues that correspond to channels determined in previous MD studies.
movie S1. Rotation of Fig. 4A about the y axis.
Reference (67)

REFERENCES AND NOTES
9. L. K. Thompson, R. Blaylock, J. M. Sturtevant, G. W. Brudvig, Molecular basis of the light

10. P. Pospíšil, Production of reactive oxygen species by photosystem II. Biochim. Biophys.

12. P. Pospíšil, The role of metals in production and scavenging of reactive oxygen species

13. L. K. Frankel, L. Sallans, P. A. Limbach, T. M. Bricker, Identification of oxidized amino acid

14. T. M. D. Kasson, S. Rexroth, B. A. Barry, Light-induced oxidative stress, N-formylkynurenine,

15. T. M. D. Kasson, S. Rexroth, B. A. Barry, N-formylkynurenine as a marker of high

17. J. Sharma, M. Panico, C. A. Shipton, F. Nilsson, H. R. Morris, J. Barber, Primary structure

18. R. Sugitani, A. A. Stuchebrukhov, Molecular dynamics simulation of water in

19. K. Tani, Y. Fujyoshi, Water channel structures analysed by electron crystallography.

20. F. M. Ho, S. Styring, Access channels and methanol binding site to the CaMn cluster in

21. M. Klvana, M. Pavlova, T. Koudelakova, S. Vassiliev, T. Zaraiskaya, D. Bruce, Molecular

22. S. Vassiliev, T. Zaraiskaya, D. Bruce, Molecular dynamics simulations reveal highly

23. S. Vassiliev, T. Zaraiskaya, D. Bruce, Molecular dynamics simulations of water in

24. A. Gabdulkhakov, A. Guskov, M. Broser, J. Kern, F. Müh, W. Saenger, A. Zouni, Probing the

26. H. Liu, J. Chen, R.-C. Huang, D. Weisz, M. L. Gross, H. B. Pakrasi, Mass-spectrometry-

27. S. Vassiliev, T. Zaraiskaya, D. Bruce, Discovering oxygen channel topology in

28. A. Gabdulkhakov, V. G. Kljaštorny, M. V. Dontsova, Molecular dynamics studies of

29. A. Gabdulkhakov, V. G. Kljaštorny, M. V. Dontsova, Analysis of molecular oxygen exit

31. D. M. Hambly, M. L. Gross, Laser flash photolysis of hydrogen peroxide to oxidize

32. K. Linke, F. M. Ho, Water in Photosystem II: Structural, functional, and mechanistic

33. A. Klaus, M. Haumann, H. Dau, Alternating electron and proton transfer steps in

34. P. Luni, S. Zhu, D. J. Wilson, Oxidative protein labeling with mass by

35. L. Wang, M. R. Chance, Structural mass spectrometry of proteins using hydroxyl radical

36. G. Xu, M. R. Chance, Hydroxyl radical-mediated modification of proteins as probes for

37. D. M. Hambly, M. L. Gross, Laser flash photolysis of hydrogen peroxide to oxidize

40. J. D. Bridgewater, J. Lim, R. W. Vachet, Using metal-catalyzed oxidation reactions and

41. S. Mukherjee, R. Sousa, Use of site-specifically tethered chemical nucleophiles to study

42. K. Takamura, N. Dohmae, T. Tako, Characterization of a digested protein complex with

43. F. M. Ho, S. Styring, Access channels and methanol binding site to the CaMn cluster in

44. A. Gabdulkhakov, A. Guskov, M. Broser, J. Kern, F. Muh, W. Saenger, A. Zouni, Probing the

46. H. Liu, J. Chen, R.-C. Huang, D. Weisz, M. L. Gross, H. B. Pakrasi, Mass-spectrometry-

47. S. Vassiliev, T. Zaraiskaya, D. Bruce, Discovering oxygen channel topology in

48. S. Vassiliev, T. Zaraiskaya, D. Bruce, Molecular dynamics simulations reveal highly

49. S. Vassiliev, T. Zaraiskaya, D. Bruce, Molecular dynamics simulations of water in

50. A. Gabdulkhakov, V. G. Kljaštorny, M. V. Dontsova, Molecular dynamics studies of

52. D. C. I. Yao, D. C. Brune, W. F. J. Vermaas, Lifetimes of photosystem I and II proteins in

Reactive oxygen species leave a damage trail that reveals water channels in Photosystem II
Daniel A. Weisz, Michael L. Gross and Himadri B. Pakrasi

Sci Adv 3 (11), eaao3013.
DOI: 10.1126/sciadv.aao3013