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Fig. 4. Conformational distributions of free and 4Z269-bound FimGNteH variants isolated in the gas phase, as revealed by IMMS. (A) CCS distributions of intact
FimGNteH variant complexes measured by IMMS. (B) Comparison of CCS distributions of free (solid line) and 4Z269-bound (dotted line) FimGNteH variants. The solid and
dotted black lines represent fitted Gaussian distributions to apo and ligated FimGNteH, respectively. Fitted Gaussian distributions are labeled by letters, given their mean
CCS values. Note that Q133K cannot bind mannose and that the dotted lines for this variant represent CCS distributions and Gaussian fits to an independently
measured apo FimGNteH Q133K spectral peak from the sample that was treated with 4Z269.
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data strongly suggest that the identity of positively selected residues
and mannose binding allosterically influence a preexisting equilibri-
um of distinct conformations in FimH in solution.

Further, ion mobility–mass spectrometry (IMMS) was used as a di-
rect method to investigate conformational distributions of FimH due to
the ability of IMMS to resolve protein collision cross sections (CCSs).
All FimGNteH and 4Z269-bound FimGNteH complexes remained intact
when they were electrosprayed into the mass spectrometer, facilitating
downstream analysis of the tip-like setting by IMMS (fig. S4, A and B).
The CCS distributions at low collision energy (CE) of the WT, Q133K,
and A62S variant FimGNteH complexes revealed a major peak and
shoulder, whereas only one predominant peak with positive skew was
observed for the A27V/V163A variant (Fig. 4A). Comparison of these
distributions indicated that the A27V/V163A distribution is shifted to the
right (or “right-shifted”) and displays a greater mean CCS than do the
other variant distributions, consistent with its larger average shape (by
Rg and Dmax) in solution. Given their non-normal shape, these distribu-
tions were modeled as a sum of two Gaussian curves. The WT, Q133K,
and A62S FimGNteH complexes were each similarly best explained by
two curves that have mean CCS values of 2464 to 2472 Å2 and 2606 to
2636 Å2, which we respectively label A and B (Fig. 4B and table S2). In
contrast, the A27V/V163A FimGNteH profile was best explained by two
highly overlapping curves with mean CCS values of 2480 and 2565 Å2,
which we respectively label A and C given their positions relative to the
curves assigned for the other three FimH variants. Binding of 4Z269
caused a rightward shift in the overall CCS distributions of WT, A62S,
and A27V/V163A (Fig. 4B). 4Z269-bound WT and A62S FimGNteH
displayed CCS distributions with right-shifted A and right-shifted B,
indicating that the two major structural species can engage 4Z269.
In contrast, 4Z269-bound A27V/V163A FimGNteH displayed a nor-
mal CCS distribution adequately explained by one well-fitting curve
because modeling with two Gaussian curves indicated that right-
shifted A and C overlap too extensively for an unambiguous assign-
ment. As expected, no FimGNteH Q133K:4Z269 complex was ob-
served (fig. S4B). In all cases, CCS distributions steeply increased with
elevation of CE, indicative of protein unfolding and confirming that the
CCS distributions analyzed above represent folded protein conforma-
tions (fig. S4C). In summary, FimGNteH WT, Q133K, and A62S in
the gas phase take on an equilibrium of two distinct conformations with
partially overlapping CCS distributions, whereas FimGNteH A27V/
V163A adopts an equilibrium of two very similar conformations with
highly overlapping CCS distributions. Thus, we have resolved two to
three different structural conformations among FimGNteH variants in
the gas phase. However, the width of the measured CCS distributions
and mixture of structural populations likely mask multiple underlying
conformational substates that dynamically interconvert within this
conformational landscape. The conformational states represented by
peaks A, B, and C may relatively correspond to bent R, T, and
elongated R states, respectively, but a detailed examination of the
presumed conformational dynamics of the T and R states is neces-
sary to assess the validity of these structural assignments.

FimGNteH samples expansive conformational phase space
composed of restrained T state and dynamic R state
To gauge the dynamic behavior of FimH in the FimGNteHWT tip-like
setting, we performed unrestrained molecular dynamics (MD) sim-
ulations in four replicates, each starting from the T, bent R, and
elongated R conformations in the presence or absence of ligands.
MD trajectories initiated from the T state revealed very little struc-
tural fluctuation (RMSD) over time, vibrating around a fixed protein
shape (Rg distribution), whereas those initiated from the bent R state
carved a vast conformational landscape with various overall protein
shapes (Fig. 5A and movies S1 and S2). To best compare and concep-
tualize the sampled conformational landscapes, we parameterized
FimGNteH conformation within a phase space composed of three mea-
surable angular dimensions: (i) bend, (ii) twist, and (iii) orientation
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of FimHLD relative to FimHPD (fig. S5A). This analysis showed the
breadth of conformations sampled in the R state compared to the re-
strained phase space of the T state simulations (Fig. 5B). Motions
among the R conformations resembled movement about a ball-and-
socket joint, in which a wide range of bends and rotations are acces-
Kalas et al. Sci. Adv. 2017;3 : e1601944 10 February 2017
sible but restrained by the architecture of the FimHLD and FimHPD

interface, which functions as a “socket.” We also observed considera-
ble overlap in phase spaces from simulations initiated from the bent
and elongated R states (Fig. 5B and movies S2 and S3), but no exchange
between T and R states under these in silico conditions or in preliminary
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Fig. 5. Dynamics and binding mechanisms of conformational populations in FimGNteH WT. (A) Structures revealed by MD simulations of FimGNteH WT in a T
conformation (top) or bent R conformation (bottom) with corresponding measures of structural fluctuation over time (RMSD) and distributions of sampled protein
shapes (Rg). Different colors correspond to four independent simulation replicates. (B) Three-dimensional conformational phase space of FimGNteH as defined by bend,
twist, and orientation angles for simulations initiated from the T (green), bent R (blue), or elongated R (cyan) conformation. Shadows are cast on the grid panels and
colored in gray. (C) Structures revealed by MD simulations of FimGNteH WT in a T conformation (top) or bent R conformation (bottom) in the presence of mannose, with
corresponding measures of structural fluctuation over time (RMSD), distributions of sampled protein shapes (Rg), and mannose binding. “On” and “Off” measure
whether the center of mass of mannose is within or outside 10 Å of the carbonyl of residue F1 in the binding pocket. (D) Representative binding modes of mannose
for T (top) and bent R (bottom) after 5 ns. Mannose is depicted as sticks, whereas FimH is shown as a ribbon representation. (E) Structures revealed by MD simulations
of FimGNteH WT in a T (top) or bent R (bottom) conformation in the presence of oligomannose-3 (Man(a1–3)-[Man(a1–6)]-Man), with corresponding measures of
structural fluctuation over time (RMSD), distributions of sampled protein shapes (Rg), and mannose binding. “On” and “Off” measure whether the center of mass of
oligomannose-3 is within or outside 20 Å of the carbonyl of residue F1 in the binding pocket. (F) Representative binding modes of oligomannose-3 for T (top) and bent
R (bottom) after 8.5 ns. Man(a1–3)-[Man(a1–6)]-Man is depicted as sticks and colored green, yellow, and cyan, respectively.
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trials at 200 to 600 ns, suggesting a high-energy barrier to transition
between T and R states that occurs on a much longer time scale
(microseconds to milliseconds). Thus, the bent and elongated R confor-
mations represent distinct snapshots of a highly dynamic conformational
state, whereas the T conformation is a snapshot of a conformationally
restrained structural state, which argues for enthalpy-entropy com-
pensation in the equilibrium between T and R states.

Mannose was then included in simulations of FimGNteH WT to
probe its effect on conformational dynamics and mechanisms of ligand
binding. The presence of mannose did not significantly alter the simu-
lated dynamic behaviors of the T and R states (Fig. 5C and movies S4 to
S6). Strikingly, the R states remained bound to mannose even during
the bending, twisting, and rotation that occured between the two do-
mains throughout the duration of the simulations (Fig. 5C and movies
S5 and S6). As expected, the R states oriented their binding pocket loops
to clasp mannose tightly with rare, short-lived dissociation events, a sig-
nature of high-affinity binding (Fig. 5, C and D). Mannose sat in the R
pocket rigidly in a “horizontal” orientation, held in place by hydrogen
bonds to residues in loop 2 (N46 and D54) and loop 3 (Q133, N135,
and D140) and through packing against I13, I52, and the “tyrosine gate”
(defined as binding pocket residues Y48 and Y137), as previously ob-
served (16). In contrast, T states weakly interacted with mannose, char-
acterized by continual motion of mannose within the open T pocket
and multiple, long-lasting dissociation events (Fig. 5C and movie S4).
When bound to the T state, the mannose ring occasionally sampled the
horizontal orientation, as observed in the pocket of the bound R state,
but was primarily observed rotated ~45° relative to its horizontal orien-
tation (Fig. 5D). In the T state pocket, the hydroxyl group off the achiral
carbon (C6) of mannose was bound to the N terminus of FimH and the
carboxyl side chain of FimH residue D54. These two interactions were
also observed with mannose bound to FimH in the R state. In contrast
to what was observed in the R state, the axial hydroxyl group off the
mannose anomeric carbon (C1) faced away from the rest of the binding
pocket. This “tilted” mannose orientation represents a unique bound
conformation and provides the first mechanistic insights into how the
T state may contribute to host-pathogen interactions. FimH engages
complex mannose-containing glycans on glycoproteins expressed on
host epithelial cells (29, 30). Thus, to have biological significance, the
tilted mannose orientation must allow stereochemical space for FimH
to engage the mannose-containing glycan without steric clashes with
the extended glycan chain. Simulations indicated that oligomannose-3
(Man(a1–3)-[Man(a1–6)]-Man) approached and bound the T state
pocket in either the tilted or horizontal orientation with about equal
frequency, revealing the sterically unhindered manner in which the T
state can engage oligomannose receptors (Fig. 5, E and F, and movie
S7). As expected, oligomannose-3 bound to the R state only sampled
the horizontal orientation (Fig. 5, E and F, and movie S8). Docking of
oligomannose-3-chitobiose (Man(a1–3)-[Man(a1–6)]-Man(b1–4)-
GlcNAc(b1–4)-GlcNAc) to distinct time points within the T state simu-
lations indicated that the 1–3 branched terminal mannose of the
oligomannose epitope is capable of freely rotating by ~45° within
the binding pocket to allow for intercalation of the Man-GlcNAc moiety
within the sterically accessible, dynamic tyrosine gate (fig. S5B). Pre-
vious crystallographic studies and isothermal titration calorimetry
experiments indicate that the tyrosine gate displays a high degree of
conformational dynamics in the presence of hydrophobic functional
groups, such as those within the aglycon moiety of mannosides (31).
Thus, the proposed ligand entry and rotation pathways may represent
a stepwise mechanism through which induced-fit binding proceeds,
Kalas et al. Sci. Adv. 2017;3 : e1601944 10 February 2017
whereby interactions in the T state trigger structural perturbations with-
in FimHLD that culminate in T-R conformational changes.

Comparison of the distributions of binding loop and residue
positions among apo T, mannose-bound T, apo R, and mannose-
bound R states for WT FimGNteH revealed specific motions that are
correlated with mannose binding (fig. S5C). Among these changes,
movement of loop 1 toward the binding pocket was most strikingly as-
sociated with mannose binding in the R state but marginally so in the T
state. Despite the occasional displacement of loop 1 away from the R
pocket, mannose often remained stably associated with R, suggesting that
loop 1 positioning is not the only determinant of mannose binding. Con-
sistent with this observation, binding assays performed on loop 1 deletion
mutants and chimeras in WT FimHLD showed a significant reduction,
but not total abrogation, in mannose binding, demonstrating a role for
loop 1 as an affinity clamp in mannose recognition (fig. S5D). These find-
ings agree with the weakened mannose affinity observed in mutations
upstream of loop 1 that prevent b-hairpin formation necessary to bring
loop 1 in close proximity to the binding pocket and observed in a recent
cocrystal structure showing loop 1 in close proximity to heptyl mannoside
in a bound T state due to stabilization from crystal packing (26, 32). In
all, these computational studies establish a vast conformational phase space
in the absence of ligand characterized by a conformationally restrained T
state andmultiple, shape-shiftingR state conformations, and they elucidate
structural and dynamic insights into two distinct mechanisms of man-
nose recognition by the low-affinity T and high-affinity R conformations.

Positive selection in FimH promotes moderate
mannose-binding affinity to facilitate bladder colonization
Positively selected residues, which were identified through sequence
analysis of FimH alleles enriched in urinary E. coli isolates, significant-
ly affect adhesive function and bacterial fitness in the urinary tract
(13). Despite A27V/V163A existing entirely in the high-affinity R
state, previous work paradoxically demonstrated that UTI89 engi-
neered to encode FimH A27V/V163A in place of FimH WT was se-
verely attenuated and unable to form IBCs in the C3H/HeN mouse
model of UTI at 6 to 24 hours post-infection (hpi) (13, 14). We in-
vestigated the kinetics of this virulence defect during the acute stages
of bladder colonization. UTI89 expressing A27V/V163A FimH exhib-
ited attenuated colonization as early as 1 hpi, which suggests a defect
in the ability of A27V/V163A to bind and/or invade superficial facet
cells (Fig. 6A). Yet, UTI89 expressing A27V/V163A FimH bound and
invaded 5637 bladder cells in vitro more efficiently than UTI89
expressing WT FimH (Fig. 6, B and C), suggesting that the high-
affinity variant does not lack the capacity to bind bladder tissue per se.
5637 bladder cells, a cancer cell line, exhibit more similarities with un-
differentiated transitional bladder epithelial cells than with the termi-
nally differentiated superficial facet cells that line the undisrupted
bladder lumen (33). Thus, attenuation in the mouse model may reflect
colonization resistance properties of the bladder habitat that are spe-
cifically selective against A27V/V163A FimH over WT FimH. To ad-
dress this hypothesis, we changed the bladder habitat by inserting a
catheter implant and subsequently tested these FimH variants in a
model of catheter-associated UTI (CAUTI). In this model, a 5-mm
piece of silicon tubing is implanted into the C57BL/6 mouse bladder,
which mechanically disrupts regions of the bladder epithelium, expos-
ing the underlying transitional epithelium and inducing inflammation.
It has previously been shown that this catheterization increases the
efficiency of bladder colonization by otherwise attenuated species of
bacteria (34–37). In the absence of an implant, again, a colonization
7 of 14
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defect was observed in C57BL/6 mice at 24 hpi (Fig. 6, D and E).
Within this CAUTI model, in the presence of an implant, UTI89 with
either WT or A27V/V163A FimH robustly colonized both the implant
and the implanted mouse bladder tissue at 1 day after infection, although
this rescue was partial because WT still outperformed A27V/V163A by
10-fold in bacterial titers in the bladder (Fig. 6, D and E). How the
implant facilitates colonization may be multifactorial. First, disruption
of the terminally differentiated epithelium may allow bacteria ex-
pressing the A27V/V163A variant to bypass the intact superficial facet
cell layer and colonize deeper epithelial layers. Second, the catheter pro-
vides another surface to which the bacteria can bind and form a
“staging ground” for dissemination to the bladder tissue. This is partic-
ularly possible because implanted catheters become coated by host pro-
teins, including THP (36, 38), which we have shown is tightly bound by
A27V/V163A (Fig. 2C). In addition, A27V/V163A can directly interact
with implanted catheters, and in vitro assays indicate that it forms bio-
films on abiotic surfaces to a higher degree than does WT (13). In con-
trast, without the catheter, the tighter binding to soluble THP, or other
soluble host proteins or mannose-containing oligosaccharides, by
A27V/V163A may be particularly detrimental to colonization because
it prevents binding to urinary tract surfaces. Thus, in the naive bladder,
soluble host proteins and oligosaccharides may act as decoy receptors,
whereas in the catheterized bladder, soluble host proteins may aid in
binding of bacteria to the implant. Together, these studies demonstrate
that the preexisting conformational ensemble and corresponding man-
nose affinity of FimH determine the outcome of infection. Further, the
Kalas et al. Sci. Adv. 2017;3 : e1601944 10 February 2017
results suggest that positive selection balances the conformational equi-
librium of FimH in solution between R and T states to tailor moderate
affinity to UPEC for the urothelium, thus facilitating adherence to and
persistence in the bladder.
DISCUSSION
Our interdisciplinary studies combining evolutionary biology and
computational and molecular biophysics allowed us to directly
interrogate, at the atomic and structural level, the multiple conforma-
tions that FimH adopts in solution in a tip-like setting within a two-
state, T-R conformational landscape (Fig. 7A). Positively selected residues
influence the preexisting conformational equilibrium of the two-domain
FimH by shifting the relative occupancies of a dynamically restrained
T state conformation and multiple R state conformations that sample
a great expanse of bends, twists, and orientations through ball-and-
socket joint-like motions. As a result of these population shifts, natural
sequence variation alters the apparent affinity of FimH toward man-
nosylated ligands. Thus, the conformational phase space of FimH in
solution and population shifts spurred by positively selected residues
further provide a framework for understanding the structural basis of
allosteric coupling between interdomain interactions and mannose
binding. Classically, the mechanism underlying protein allostery has
been conceptualized as a deterministic process, in which information
is transmitted through structural perturbations from one site of a pro-
tein to another in a sequential or concerted manner (39–41). However,
A B C

D E

Fig. 6. Role of FimH conformation in bladder colonization during UTI. (A) Bacterial titers of mouse bladders infected with UTI89 harboring either FimH WT (blue) or
A27V/V163A (orange) at an inoculum of 107 colony-forming units (CFU) measured at 1, 3, and 6 hpi. (B) Total bacterial titers of 5637 bladder epithelial cells (no gentamicin
treatment) infected with UTI89 harboring WT (blue), Q133K (red), A62S (green), or A27V/V163A (orange) FimH at an inoculum of 107 CFU. (C) Invaded bacterial titers of 5637
bladder epithelial cells (treated with gentamicin) infected with UTI89 harboring WT (blue), Q133K (red), A62S (green), or A27V/V163A (orange) FimH at an inoculum of 107 CFU.
LOD, limit of detection. (D and E) Bacterial titers of C57BL/6 mouse bladders without catheterization or bladders and implants infected with UTI89 harboring either FimH WT
(blue) or A27V/V163A (orange) at an inoculum of 107 CFU 24 hours after catheterization. **P < 0.01, ***P < 0.001, ****P < 0.0001, two-tailed Mann-Whitney U test.
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recent synergy in the fields of protein biophysics and protein evolution
has given rise to the emerging perspective that protein allostery is a
natural and statistical consequence of shifts in the relative populations
and/or dynamics of preexisting conformational ensembles (42, 43),
which is supported by this work. Furthermore, by influencing the pre-
existing equilibrium of FimH, positively selected residues alter the very
pathway through which binding occurs: If a particular FimH variant
favors the T state, it will favor an induced-fit mechanism of binding; if
a FimH variant favors the R state, it will use conformational selection
as its mechanism of binding.

Our structural, biophysical, and computational work indicate that
the low-affinity T and high-affinity R conformations can bind mannose
through distinct binding orientations and pathways. Consistent with
previous cocrystal structures, simulations of the R state indicate that
mannose and oligomannose-3 bind in a high-affinity horizontal orien-
tation coordinated through hydrogen bond formation with residue F1
and residues in loops 2 and 3 and clamped by residue I13 in loop 1.
Our simulations and a recent crystal structure of the T state bound to
heptyl mannoside (26) also indicate that the T state may bind man-
Kalas et al. Sci. Adv. 2017;3 : e1601944 10 February 2017
nose in this horizontal orientation, particularly when loop 1 is prox-
imal to the binding pocket. In addition to this binding mode, mannose
also approaches and binds the T state pocket in a tilted orientation,
specifically to residue F1 of the N terminus and D54 of loop 2, in a
low-affinity interaction. Mannose glycans may slide and rotate and
interact with the conformationally dynamic tyrosine gate of FimH.
This novel ligand entry and rotation pathway may represent a stepwise
mechanism through which induced-fit binding proceeds, whereby inter-
actions in the T state trigger structural perturbations within FimHLD

that culminate in T-R conformational changes. Furthermore, tight
binding of mannose through multiple different bends and orientations
of the R state, as indicated in our simulations, provides the basis for a
physical model, here termed molecular tethering, by which bacteria can
remain bound to their mannosylated receptors on the bladder surface
(Fig. 7B). Entropic freedom of multiple bound conformations within
the high-affinity R state would theoretically enhance the lifetime of
mannose binding relative to a single high-affinity R state. Moreover,
the enhanced conformational flexibility and the number of viable bound
R conformations in FimH may increase the biophysical adaptability of
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Fig. 7. Proposed model of FimH conformational ensembles, mannose binding, and virulence in UTI. (A) Two-state conformational landscape of FimH. FimH at the
pilus tip natively adopts an equilibrium of a single, dynamically restrained, low-affinity T state and multiple, highly dynamic, high-affinity R states with various bends, twists,
and orientations. Positively selected residues can shift this preexisting conformational equilibrium and thereby influence mannose-binding affinity. The T and R states can bind
mannose. Mannose in a tilted orientation rapidly enters into the widened and shallow binding pocket of the T state. Mannosylated ligands in a bound T state can then rotate
in a high-affinity orientation and allosterically trigger structural perturbations that disrupt FimHLD and FimHPD interactions and facilitate conversion to the bound R state. In
addition, mannose in a horizontal orientation can less rapidly engage the R state but does so very tightly through hydrogen bond interactions with several binding loop
residues. Positive selection, in modulating a native conformational equilibrium, likely alters flux through these two distinct binding mechanisms. (B) Schematic model of the
FimH molecular tether. The bends, twists, and orientations between FimHLD and FimHPD adopted in bound R states argue for a model in which the pilus tip can bend and
rotate at the site of the FimH linker with an immobilized, bound FimHLD. This physical tethering in theory increases the biophysical and functional adaptability of the pilus and
thereby allows bacteria to remain attached to the bladder epithelium. (C) Pathogenesis outcomes depend on the preexisting equilibrium and affinity of FimH, whereby
moderate affinity is ideal for successful colonization of the bladder epithelium and formation of IBCs. Catheterization allows the high-affinity variant A27V/V163A to partially
circumvent the colonization resistance property observed in the intact, unperturbed bladder habitat.
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type 1 pili while tethered to a surface in part to allow attached bacteria to
resist urine flow while bound to the bladder epithelium (44, 45). Mol-
ecular tethering likely represents a universal feature of macromolecular
interactions involving Gram-negative adhesins or any other two-
domain, allosterically regulated protein containing a flexible linker.

Coupled with genetic and in vivo pathogenesis work, we have de-
monstrated how evolutionary pressures through positive selection in
FimH allosterically shape the conformational dynamics and phase
space of FimH to maintain a balanced conformational equilibrium be-
tween R and T states to allow UPEC to colonize the urinary tract (Fig.
7C). Surprisingly, a FimH variant that only adopts the high-affinity R
state is severely attenuated early in a mouse model of uncomplicated
UTI but is proficient at colonizing catheterized bladders in vivo or blad-
der transitional-like epithelial cells in vitro. Given how early the patho-
genesis defect of A27V/V163A is observed relative to WT (within 1 hpi),
some preset aspect(s) of the bladder habitat likely select against the
high-affinity R conformation(s). One possibility may relate to the
slower kinetics of association of the R state under conditions of flow,
as part of a catch-bond mechanism (44–46), which, in the case of A27V/
V163A, would translate to less frequent interactions with the bladder
epithelium and increased clearance of bacteria from the bladder during
periods of urination. A second possibility is that some inherent prop-
erty of the bladder epithelium serves as a restrictive factor against the
R state. We suggest that the superficial facet cells may mediate this
restriction, because the A27V/V163A variant is capable of binding
5637 bladder cells in vitro and can mediate the colonization of the
catheter-implanted bladder habitat. A third possibility is that soluble
mannosylated glycoproteins, such as THP, and mannose-containing oli-
gosaccharides (47) may serve as decoy receptors that reduce the ability of
A27V/V163A to colonize the bladder epithelium because it binds more
tightly than WT to THP. These same host proteins that serve as decoys
in host defense may facilitate bacterial colonization by coating the cath-
eter (36, 38). More work is required to dissect the individual and
combinatorial contributions that the abovementioned possibilities may
exert in preventing the high-affinity R state in mediating successful blad-
der colonization. Together, our data suggest that the T state may serve to
temporarily mask the strong affinity that FimH has for mannose to avoid
restrictive factors or properties native to the bladder habitat to initiate
productive binding when engaging the host epithelium.

Fundamentally, this encompassing study of solution protein dynam-
ics, structure, and function exemplifies the importance of defining the
native conformational ensembles of a protein in solution and its popu-
lation shifts in the presence of ligand for a complete model of allosteric
regulation. Understanding mechanistic and structural aspects of adhesin
allostery, conformation, and function is critical in efforts to further de-
velop antibiotic-sparing small molecules and vaccines for the treatment
of acute and recurrent infections caused by UPEC and other pathogens.
MATERIALS AND METHODS
Ethics statement
All animal experiments were conducted according to the National
Institutes of Health (NIH) Guide for the Care and Use of Laboratory
Animals and performed in accordance with institutional regulations
after pertinent review and approval by the Animal Studies Committee
at Washington University School of Medicine (protocol number
20150226). Human urine collection was performed with informed
consent and approved under Institutional Review Board protocol
201207143.
Kalas et al. Sci. Adv. 2017;3 : e1601944 10 February 2017
FimH variants
In silico analysis of FimH sequences among 287 E. coli strains previ-
ously revealed three specific residues (positions 27, 62, and 163) evolv-
ing under positive selection. Variations at these three positions in the
FimH sequence from UPEC strain UTI89 were examined in this
study. These include the following: (i) the WT variant (A27/A62/
V163), in which these three amino acids are together observed in
E. coli isolates from infected urine (19 of 254 strains) but not in isolates
from healthy feces (0 of 33 strains); (ii) the A62S variant (A27/S62/
V163), in which these three amino acids are together observed in high
abundance in isolates from both infected urine (169 of 254 strains)
and healthy feces (28 of 33 strains); and (iii) the engineered A27V/
V163A variant (V27/A62/A163), in which these three amino acids
have not been observed in tandem and have been shown to negatively
affect pathogenesis in vivo. The mannose-binding pocket mutant
Q133K, which cannot bind mannose, was also incorporated in this
study as a negative control. These variants were generated by site-
directed mutagenesis of the WT FimH allele from UTI89, as described
in a previous report (13).

Protein expression and purification
FimCH variant complexes were purified from periplasm prepara-
tions, as previously described (14). FimGNteH complexes were
assembled by a spontaneous in vitro DSE reaction, in which FimGNte

peptide (FimG residues 1 to 15; EZBiolab) was mixed in ~10× molar
excess with FimCH variant complexes in 15 mM MES (pH 5.6) and
50 mM NaCl and incubated at 37°C for 16 hours. FimGNte displaces
FimC in this reaction, and resultant FimGNteH variant complexes
were purified away from excess FimGNte peptide and free FimC using
a SOURCE 15S column (GE) in 15 mMMES (pH 5.6) with a gradient
of 0 to 400 mM NaCl. Pooled fractions containing FimGNteH variant
complexes were dialyzed against 15 mM MES (pH 5.6) and 50 mM
NaCl, concentrated to 1 to 5 mg/ml, and stored stably at 4°C for use in
biophysical assays.

Mannoside incubations
Mannoside compound 4Z269 (para-biphenyl-2-methyl-3′-methyl
amide mannoside) (27) was incubated with FimGNteH variant
complexes for at least 1 hour at 4°C before biophysical analysis at mo-
lar ratios indicated below.

Differential scanning fluorimetry
FimGNteH variants (10 mM) in the absence or presence of 4Z269 (10 mM)
were combined with 5× SYPRO Orange (Sigma; 1:1000 dilution of
5000× stock) in 50 ml of reaction mixture buffered in 15 mM MES
(pH 5.6), 50 mM NaCl, and 0.4% dimethyl sulfoxide. Binding equilib-
ria were established by allowing the reaction mixtures to incubate
at 23°C for 30 min. These reaction mixtures were then placed in
96-well clear-bottom polymerase chain reaction plates and subjected
to a melt curve from 20° to 90°C in 0.5°C increments of 15 s, each
followed by a fluorescence read of the “HEX” channel in a Bio-Rad
CFX96 thermocycler. Melt curves were fitted to the Boltzmann equa-
tion [y = A2 + (A1 − A2)/(1 + exp((x − xo)/dx)), where xo is the Tm] to
determine the melting temperature (Tm).

Enzyme-linked immunosorbent assay
Immulon 4HBX 96-well plates were coated overnight with 1 mg of
human glycoproteins reported to be ligands of FimH (secretory IgA,
laminin, collagen IV, and THP). All glycoproteins were ordered from
10 of 14
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Sigma except crude THP, which was isolated by ammonium sulfate
precipitation of urine donated by healthy volunteers. Coated wells
were then incubated with 200 ml of blocking buffer [phosphate-buffered
saline (PBS) + 2% bovine serum albumin (BSA)] for 2 hours at 23°C,
followed by incubation with 100 ml of FimGNteH variants diluted in
blocking buffer to 1 mg/ml for 1 hour at 37°C. After washing three
times with PBS + 0.05% Tween 20, 100 ml of polyclonal rabbit anti-
body raised against FimH residues 1 to 165 (from E. coli strain J96)
with a C-terminal six-histidine tag (Sigma Genesis; 1:5000 dilution in
PBS + 2% BSA) was added to each well for 1 hour at 37°C. After
washing three times with PBS + 0.05% Tween 20, 100 ml of polyclonal
goat anti-rabbit antibody conjugated to horseradish peroxidase (KPL;
1:5000 dilution in PBS + 2% BSA) was added to each well for 1 hour
at 37°C. After a final round of washing, plates were developed with
100 ml of tetramethylbenzidine substrate (BD Biosciences) and quenched
within 1 min with 50 ml of 1 M H2SO4, and absorbance was measured
at 450 nm.

Small-angle x-ray scattering
Before sample submission, FimCH and FimGNteH variant complexes
were buffer-exchanged three to five times in Spin-X UF 5K concen-
trators (Corning) against freshly prepared buffer [15 mM MES (pH
5.6) and 50 mM NaCl] to a final concentration of 5 to 8 mg/ml.
FimGNteH:4Z269 complexes were prepared in the same manner after
FimGNteH variants were incubated with 4Z269 at a 1:2 molar ratio.
Samples were diluted to 1 to 5 mg/ml using the final filtrate to ensure
identical buffer conditions between buffer and sample. Samples were
then shipped to the SIBYLS beamline at the Advanced Light Source
for data collection and basic data processing, including scattering in-
tegration and buffer subtraction, as detailed extensively in the high-
throughput mail-in SAXS protocol (48). Integrated scattering profiles
were then inspected and analyzed using the ATSAS program suite
(49). At least 9 to 12 scattering profiles representing multiple concen-
trations and exposures were merged in PRIMUS to generate an aver-
age scattering profile for each sample tested. Pair distance distributions
[p(r)] and maximal intramolecular distances (Dmax) were determined
by GNOM. Structural comparison maps were calculated, as previously
described, using the SIBYLS SAXS Similarity online tool (http://sibyls.
als.lbl.gov/saxs_similarity/) (50). Fits of crystal structures to merged
scattering profiles were evaluated by the FoXS and MultiFoXS servers
in the case of single-state and multistate rigid-body modeling, respec-
tively. For each sample, 10 ab initio models were generated through
simulated annealing by GASBOR (51) and averaged by DAMAVER
(52). The resultant low-resolution molecular envelope of each sample
was represented in PyMOL by setting the van der Waals distance
(vdw) to 5.0 Å and the solvent radius (solvent_radius) to 4.5 Å.

Native electrospray ionization and IMMS
FimGNteH variant complexes in 15 mM MES (pH 5.6) and 50 mM
NaCl were diluted to 10 to 20 mM protein concentration and
underwent multiple rounds of buffer exchange through dilution and
concentration into 100 mM ammonium acetate (pH 6.5) (>99.99%
trace metals basis) such that the final salt concentration was reduced
to lower than 10 to 20 mM for clean native electrospray ionization
(nESI) spectra. FimGNteH:4Z269 complexes were prepared in the same
manner after FimGNteH variants were incubated with 4Z269 at a 1:1
molar ratio. Samples were loaded at 5 to 10 ml in custom-made elec-
trospray capillaries and injected into a hybrid ion mobility quadrupole
time-of-flight mass spectrometer (SYNAPT G2 High Definition Mass
Kalas et al. Sci. Adv. 2017;3 : e1601944 10 February 2017
Spectrometry, Waters). The instrument was operated under gentle ESI
conditions (capillary voltage, 1.5 to 2.2 kV; sampling cone, 2 V; extrac-
tion cone, 1 V; source temperature, 36°C). CE was varied to observe
dissociation events between FimGNte, FimH, and 4Z269. The pressure
of the vacuum/backing region was 5.1 to 5.6 mbar. For the ion mo-
bility measurements, the helium gas flow to the collision cell was
70 ml/min, the ion-mobility spectrometry (IMS) gas flow was 35 ml/min,
the IMS wave velocity was 500 m/s, and the IMS wave height was
20 V. Nitrogen was used as the mobility carrier gas. The instrument
was externally calibrated up to 8000 mass/charge ratio (m/z) with the
clusters produced by ESI of NaI solution (100 mg/ml). The peak
picking and data processing were achieved by using MassLynx
(version 4.1) and DriftScope software (Waters). The CCSs for protein
ions were converted using previously published calibration protocols
and databases (53). FimGNteH variants in the presence or absence of
4Z269 were aerosolized by nESI, and native mass spectra were ac-
quired under a range of CEs (5 to 40 V). Each spectrum was acquired
every 1 s for 2 min and gated at m/z values of 3054 to 3056 (apo) and
3094 to 3096 (+4Z269) for the +10 charge state. These spectra indicated
that all FimH variants entered the gas phase as an intact FimGNteH
complex at low CE but steadily dissociated with increasing CE (fig.
S3A). These spectra also revealed that FimGNteH variants stably asso-
ciated with 4Z269 in accordance with the relative binding strengths of
the FimH alleles: 4Z269 occupies ~100% of A27V/V163A, ~90% of
WT, ~50% of A62S, and ~0% of Q133K (fig. S3B). The +10 charge
state corresponding to intact FimGNteH variants was then subjected to
ion mobility analysis at various CEs. CCS distributions were modeled
as a sum of two Gaussian curves because modeling by one Gaussian
curve resulted in significantly poorer fits in nearly all cases (table S2).

Protein crystallization and structure determination
Crystals of FimGNteH A62S grew under numerous polyethylene glycol
(PEG) conditions at 20°C by hanging drop vapor diffusion in 96-well
plates. The diffracted crystals of FimGNteH A62S were grown within
the PEG II crystallization screen (Qiagen) by mixing 100 nl of protein
(7.5 mg/ml) with 100 nl of mother liquor [0.2 M calcium acetate, 0.1 M
Hepes (pH 7.5), and 10% PEG 8000] and equilibrated against 75 ml
of mother liquor in the reservoir. These crystals took on a thick rec-
tangular prism morphology and were picked directly from the 96-well
screen. They were transferred into a cryoprotectant [0.2 M calcium
acetate, 0.1 M MES (pH 5.6), 25% PEG 8000, and 20% glycerol]
and then flash-frozen in a cryostream. Crystals of FimGNteH A27V/
V163A were grown at 20°C by hanging drop vapor diffusion by
mixing 1 ml of protein (5 mg/ml) with 1 ml of mother liquor [0.2 M
calcium acetate, 0.1 M Hepes (pH 7.5), and 5% PEG 8000] and 0.5 ml
of 0.1 M cadmium chloride and equilibrated against 1 ml of mother
liquor in wells of a 24-well plate. These crystals took on a thin-plate
morphology. They were transferred into a cryoprotectant [0.2 M cal-
cium acetate, 0.1 M Hepes (pH 7.5), 25% PEG 8000, and 20% glycer-
ol] and then flash-frozen in a cryostream. Diffraction data were
collected at 100 K at an in-house facility equipped with a rotating anode
(Rigaku MicroMax-007 generator), a Rayonix marmux x-ray source,
and a Mar345 image plate detector. Data were indexed and integrated
in iMosflm (54) and scaled by Scala (55). The phase problem was
solved by MR using Phaser-MR in Phenix (56) with two distinct
search ensembles: (i) FimHPD (from PDB ID 1KLF) and FimHLD

in the T state (from PDB ID 3JWN) as separate domains and (ii)
FimHPD (from PDB ID 1KLF) and FimHLD in the R state (from
PDB ID 1KLF) as separate domains. The best solutions were identified
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as a T conformation for FimGNteH A62S and a bent R conformation
(90° between FimHLD and FimHPD) for FimGNteH A27V/V163A. Sev-
eral rounds of refinements were performed in phenix.refine to improve
the final models.

Molecular dynamics
Crystal structures of FimGNteH published in this study along with
models of FimGNteH based on previous crystal structures (GNte docked
on H from CH structure) in the absence or presence of ligands were
used to initiate MD simulations. Structural models of FimGNteH var-
iants were created with the in silico mutagenesis wizard in PyMOL after
the mutant side-chain rotamer with the fewest steric clashes was
selected. Structural models were then prepared within the CHARMM36
force field and the TIP3P water model by the MD software package
GROMACS-4.6.7 (57). The system was first solvated in a cubic box,
with sides equal to 130 Å in the presence of 50 mMNaCl. The structure
was then energy-minimized to reduce steric clashes, and the system was
finally equilibrated at constant temperature (37°C) and pressure (1 atm).
Conventional unrestrained MD simulations were then performed with
steps of 2 fs for a total time of ~15 to 20 ns for each run, collecting four
replicates for simulations on the T (5JQI), bent R (5JR4), and elongated
R (based on 1KLF) conformations for WT FimH. Longer simulations
were also performed at 100 to 200 ns for three replicates for all FimH
variants in these conformations with similar results. Coordinates were
saved every 0.1 ns. Commands in GROMACS and graphical output in
MATLAB were used to analyze simulation trajectories.

Conformational phase space
Conformational phase space calculations were performed with custom
in-house scripts in PyMOL and MATLAB after alignment of the pilin
domain to a reference structure (FimHPD from FimCH). The
coordinates of the following atoms were tracked and assigned the
corresponding labels: Leu225 and CD2 (pip1 for “point in pilin 1”),
Leu193 and CD1 (pip2), Ala247 and N (pip3), Leu193 and CA (pip4),
Leu129 and CD2 (pil1 for “point in lectin 1”), Val20 and CG1 (pil2), and
Val105 and N (pil3). The points {pip1, pip2} and {pip2, pil1} define
vectors along the longest dimension of FimHPD and FimHLD, re-
spectively. The points {pip2, pip3, pip4} and {pil1, pil2, pil3} define
transverse planes that respectively bisect FimHPD and FimHLD per-
pendicular to the axis of the longest dimension. Bend angle is defined
as the {pip1, pip2, pil1} angle. Twist angle is defined as the {pip1, pip2,
x} angle, where x is defined as the point on the {pil1, pil2, pil3} plane
at a fixed radial distance from pil1 that is closest to the {pip2, pip3,
pip4} plane. Orientation angle is defined as the {pip3, pip2, y} angle,
where y is the point on the {pip2, pip3, pip4} plane closest to x. These
angles are schematically represented in fig. S5A.

Mouse infections
For the uncomplicated UTI model, 7- to 8-week-old female C3H/HeN
mice were obtained from Envigo. Mice were anesthetized and inocu-
lated via transurethral catheterization with 50 ml of bacterial suspen-
sion (~1 × 107 to 2 × 107 CFU in total) in PBS. At times indicated,
mice were sacrificed, and bladders were aseptically removed and pro-
cessed for CFU determination (37). For the CAUTI model, a 5-mm
piece of silicon tubing (RenaSil 0.635-mm outer diameter) was in-
serted transurethrally into the bladders of 6-week-old female
C57BL/6 mice, as previously described (37). Twenty-four hours after
implantation, the mice were transurethrally infected with ~2 × 107

CFU of UTI89 expressing either the WT or A27V/V163A allele of
Kalas et al. Sci. Adv. 2017;3 : e1601944 10 February 2017
FimH with the fim operon locked in the phase on state (13). Mice
were sacrificed 24 or 72 hpi, and bacteria colonizing the bladder
and implant were plated for quantification.

Bladder epithelial cell studies
Human bladder epithelial cells, designated 5637 (ATCC HTB-9) cells,
were obtained from the American Type Culture Collection and main-
tained in RPMI 1640 supplemented with heat-inactivated 10% (v/v)
fetal bovine serum at 37°C in the presence of 5% CO2. Confluent,
serum-starved 5637 cells in 24-well plates were infected with UTI89
strains at a multiplicity of infection of 10. After 30 min, culture media
were replaced either by fresh culture media or by media with genta-
micin sulfate (120 mg/ml) (Sigma-Aldrich) to kill extracellular bacteria.
Cells were further incubated for 1 hour, washed rigorously, solubilized
with 1% Triton X-100, quenched with PBS, and plated for bacterial
CFU quantification.
SUPPLEMENTARY MATERIALS
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movie S3. Combined MD simulation trajectories initiated from the elongated R state in the
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