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hypothesize that the ultrahigh strength is primarily attributed 
to precipitation strengthening generated from the high density 
of hierarchical intragranular nanoprecipitates in the primary fcc 
phase.

Precipitation strengthening occurs by two mechanisms: the 
shearing mechanism or the Orowan bypass mechanism, depending 
on many factors, including the precipitate size, coherency, antiphase 
boundary (APB) energy, and strength (or hardness) of the precipi-
tate (35). We first discuss crystal structures and coherency of the fcc 
 matrix, the primary ′ precipitate, and the secondary * precipi-
tate in the fcc phase. Figure 4 shows high-resolution TEM (HRTEM) 
images of the fcc phase containing hierarchical intragranular nano-
precipitates. Figure 4A displays a schematic diagram of the detailed 
microstructure of coherently hierarchical nanoprecipitates in the fcc 
phase, where dashed lines in Fig. 4A denote that the  matrix, ′ 
precipitates, and * precipitates are coherent, which will be discussed 
hereinafter. An HRTEM image containing the  matrix and two ′ 
precipitates (marked as precipitates 1 and 2, respectively) inside the 
fcc grain is shown in Fig. 4B. Figure 4C shows the inverse fast Fourier 
transform (IFFT) of the square area in the  matrix (Fig. 4B), with its 
corresponding FFT presented in the inset, and the FFT corresponds 

to an SAED pattern along the [011] zone axis of a disordered fcc 
(A1) structure with a lattice parameter of ~3.601 Å. The IFFT of the 
′ precipitate 1 in Fig. 4B is displayed in Fig. 4D with corresponding 
FFT presented in the inset; the FFT corresponds to an SAED 
pattern along the [011] zone axis of an ordered fcc (L12) structure 
with a lattice parameter of ~3.605 Å. This suggests that the  matrix 
and the ′ precipitate have an orientation relationship of <011>∥ 
<011>′ and {111}∥ {111}′. Figure 4E presents a bright-field TEM 
image of the , ′, and * phases, and an HRTEM image of the cir-
cled area in Fig. 4E is shown in Fig. 4F, which reveals the interface 
between ′ and * precipitates. Similarly, as shown in Fig. 4G, the 
FFT of the ′ precipitate suggests an ordered L12 structure with a 
lattice parameter of ~3.605 Å; however, Fig. 4H shows that the FFT 
of the * precipitate suggests a disordered A1 structure with a lat-
tice parameter of ~3.601 Å. Thus, ′ and  * precipitates also have an 
orientation relationship of <011>′∥ <011>* and {111}′∥ {111}*. 
It is therefore concluded that the  matrix, ′ precipitate, and * 
precipitate are coherent, and they exhibit an orientation relationship 
of <011>∥ <011>′∥ <011>* and {111}∥ {111}′∥ {111}*. This 
orientation relationship is also further confirmed in fig. S3. The  
matrix and the * precipitate have a disordered A1 structure, while 

Fig. 1. X-ray scattering and EBSD analyses of the bulk Fe25Co25Ni25Al10Ti15 HEA. (A) XRD pattern. (B) Statistics of grain diameters for the two phases were collected 
on the basis of EBSD and TEM images. (C) EBSD phase map. (D) EBSD IPF corresponding to the EBSD phase map in (C).
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Fig. 2. Microstructure of the bulk Fe25Co25Ni25Al10Ti15 HEA. (A) Bright-field TEM image and SAED patterns corresponding to grains a and b. (B) High density of ′ 
nanoprecipitates inside the fcc phase. (C) Bright-field TEM image of a ′ nanoprecipitate showing some secondary * (as indicated by the arrows) nanoprecipitates inside. 
(D) Schematic diagram shows the microstructure of the alloy, indicating that fcc  matrix grains (blue) have hierarchical intragranular precipitates, i.e., primary ′ precipitates 
(orange) and secondary * precipitates (white), and that there are some twins in the fcc grains.

Fig. 3. In situ SEM microtensile testing of the bulk Fe25Co25Ni25Al10Ti15 HEA. (A) Representative tensile engineering stress-strain curve of the SPS-consolidated sample 
at room temperature. (B) Corresponding tensile coupon having a cylindrical gauge section with a 4-m diameter and a 12-m length between electron beam–deposited 
Pt reference markers.
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the ′ precipitate displays an ordered L12 structure, with approxi-
mately identical lattice parameters. Hence, the , ′, and * phases 
exhibit very similar crystal structures and have almost identical 
lattice parameters, which explains why XRD can only identify one 
fcc crystal structure, as is the cases in many HEAs (12, 13, 17). In 
summary, we conclude that the fcc  matrix is an A1-structured 
Fe-(Co,Ni)–based solid-solution phase, the ′ precipitate is a L12-
structured (Ni,Co)3-(Ti,Al)–based intermetallic phase, and the * pre-
cipitate is an A1-structured phase with an undetected composition.

The shearing mechanism will be active when a precipitate with 
small size is coherent, whereas the Orowan bypass mechanism oc-
curs preferentially when the precipitate is incoherent (27, 28, 35). 
Since ′ and * precipitates are coherent with the  matrix and ′ 
precipitates have an average diameter of ~57 nm, shearing is sus-
pected to be the operative mechanism. To obtain direct evidence 
of this mechanism, in situ compression tests were carried out in the 
TEM at room temperature. The recorded test (movie S1) reveals 
that dislocations do in fact shear ′ precipitates. Figure S4 presents 
sequential snapshots from the movie that track the motion of dislo-
cations with arrows. The dislocations first generated in the  matrix 
propagate through the ′ precipitates, which implies that shearing 
of the precipitate has occurred as opposed to the Orowan bypass 
mechanism. As dislocations shear the precipitate, the dislocation 
motion is hindered, leading to accumulation of dislocations in ′ 
precipitates. It is expected that dislocations also shear coherent * 
precipitates as they traverse the ′ precipitate. The observation of 
the abovementioned dynamic process during the in situ TEM com-
pression test suggests that the shearing mechanism is also active in 
room temperature tensile testing. Hence, it is anticipated that a 
relatively high stress will be needed for the shearing mechanism 
of both of ′ and * precipitates, thereby leading to an exceptional 
precipitation strengthening. In addition to precipitation strength-

ening, other strengthening mechanisms are believed to contribute 
to the ultrahigh strength measured. Because of submicrometer grain 
sizes, 409 and 227 nm for the fcc and bcc phase, respectively, grain-
boundary strengthening is likely to occur (23, 34). Furthermore, the 
bcc phase with ordered B2 structure is usually considered as a hard/
strong phase that can result in a high increment in yield strength 
due to a load transfer mechanism (13, 36).

To provide insight into the strength of the material presented in 
this work, the tensile strength versus failure strain is plotted in Fig. 5 
alongside other HEAs that exhibit high strength (yield strength and 
tensile strength both greater than 1 GPa) (19–30). The performance 
of these HEAs is attributed to complex microstructures achieved by 
various processing routes outlined in table S2. Note that most of 
reported HEAs have yield strengths and tensile strengths less than 
1 GPa, falling outside the range of mechanical performance presented 
in Fig. 5. Specifically, for HEAs processed by cold rolling/cryo roll-
ing and high-pressure torsion, high strengths are mainly attributed 
to dislocation strengthening and grain-boundary strengthening, as 
well as the presence of strong B2 and/or  phases (19–25). Grain-
boundary strengthening and dispersion strengthening mainly ac-
count for the strengthening mechanisms of the Ni1.5Co1.5CrFeTi0.5 
HEA with fine grains and oxide contaminants (30). The high strength 
of the as-cast bcc TaHZrTi refractory HEA is due to the high-load 
transfer ability of bcc refractory HEAs (29). The strengthening 
mechanism in the precipitation-strengthened HEAs is dominated 
by the shearing mechanism (26, 28). The uniqueness of precipita-
tion strengthening in the Fe25Co25Ni25Al10Ti15 HEA is due to the 
hierarchical precipitate spatial distribution, which is not found in 
precipitation-strengthened HEAs reported in the literature. In pre-
viously reported HEAs, dislocations only need to shear coherent 
′ precipitates (26, 28). Here, dislocations must shear both the ′ 
(primary precipitates) and the * (secondary nanoprecipitates). * 

Fig. 4. HRTEM images of the fcc phase containing hierarchical intragranular nanoprecipitates. (A) Schematic diagram of coherently hierarchical nanoprecipitates in 
the fcc phase. (B) HRTEM image of the fcc  matrix and two ′ precipitates. (C) IFFT of the square area (the  matrix) in (B) with corresponding FFT presented in the inset. 
(D) IFFT of the ′ precipitate 1 in (B) with corresponding FFT presented in the inset. (E) Bright-field TEM image of the , ′, and * phases. (F) HRTEM image of the circled 
area in (E). (G) IFFT of the square area indicated by solid line (the ′ precipitate) in (F) with corresponding FFT presented in the inset. (H) IFFT of the square area indicated 
by dashed lines (the * precipitate) in (F) with corresponding FFT in the inset.
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nanoprecipitates act as an additional obstacle, which results in an 
exaggerated precipitation strengthening effect. As shown in Fig. 5, 
compared to data reported in the literature, the Fe25Co25Ni25Al10Ti15 
HEA exhibits the highest tensile strength with an appreciable 
failure strain (~5.2%) at room temperature, suggesting that the 
proposed strategy in this work is valid due to the strengthening 
mechanisms previously discussed.

Upon inspection of the fracture surface generated from in situ 
SEM microtensile testing (fig. S5), both faceted and dimpled regions 
are present, corresponding to brittle and ductile failure, respectively. 
Evidently, plastic deformation of the alloy occurs primarily through 
the ductile fcc phase, which has the aforementioned hierarchical 
architecture. Dislocation accumulation/storage is enhanced inside the 
fcc grains due to the presence of hierarchical intragranular nano-
precipitates, which may result in enhanced strain hardening and 
improved ductility (37) relative to other reported HEAs. This pro-
posed mechanism accounts for the appreciable work hardening and 
failure strain of ~5.2% exhibited by the Fe25Co25Ni25Al10Ti15 HEA 
under tension at room temperature.

Hierarchical intragranular nanoprecipitates in HEAs were at-
tained through MA followed by SPS. The synthesis of HEAs by MA 
results in remarkably extended solid solubility, and therefore, super-
saturated solid solutions may be formed in the as-milled HEA pow-
ders (30, 34). Subsequently, the formation of more equilibrated phases 
occurs during consolidation at elevated temperature (12, 30, 34). 
The 49-hour milled Fe25Co25Ni25Al10Ti15 HEA powders are super-
saturated solid solutions consisting of a primary bcc phase and a 
small amount of fcc phase (see fig. S6). However, following SPS, the 
bulk sample exhibits a primary fcc phase (containing hierarchical 
intragranular nanoprecipitates) and a minor bcc phase. The pri-
mary ′ nanoprecipitates have multiple principal elements; they are 
(Ni,Co)3-(Ti,Al)–based phase and may have some other constituent 
elements such as Fe. As a result, some secondary * nanoprecipi-
tates precipitate from the primary ′ nanoprecipitates during the late 
stage of sintering. The * nanoprecipitates may form through phase 
separation mechanism during the cooling process of SPS, which can 
be understood by performing Scheil-Gulliver nonequilibrium model-

ing, as shown in fig. S7 (38, 39). It is not uncommon to observe 
nanoscale phase separation upon cooling of HEAs, since the diffu-
sion of some species in HEAs may be limited, and thus promoting 
nanoscale phase separation within the matrix (12, 31, 36). The non-
equilibrium thermodynamic modeling indicates that, along with the 
major species, Fe is within the fcc-structured * phase, which is 
consistent with the EDS analysis.

In summary, the current work demonstrates that it is possible to 
design a multiphase Fe25Co25Ni25Al10Ti15 HEA, having a high density 
of hierarchical intragranular nanoprecipitates, with ultrahigh strength; 
the values reported herein represent one of the highest strength values 
ever reported for any HEAs.

MATERIALS AND METHODS
Materials processing
The bulk Fe25Co25Ni25Al10Ti15 samples were synthesized via MA 
followed by SPS. A high-energy planetary ball-milling machine was 
used to perform the MA process. Blended elemental powders of Fe, 
Co, Ni, Al, and Ti (purity of >99.7 weight % and particle sizes of 
≤45 m), and tungsten carbide balls were placed in a stainless steel 
vial. The entire MA process was operated at 300 rpm and protected 
by argon. First, the powders were subjected to dry milling without a 
process control agent (PCA) for 45 hours. Four hours of wet milling 
was conducted using ethanol as PCA following 45 hours of dry mill-
ing. Then, the 49-hour as-milled powders were dried. Subsequently, 
sieved powders with particle sizes of ≤75 m were obtained after 
the dried powders passed through a 75-m sieve. A Dr. Sinter 825 
apparatus (Sumitomo Coal Mining Co. Ltd., Japan) was applied to 
consolidate the sieved powders into bulk samples at 1000°C. During 
SPS, the vacuum pressure was maintained at <8 Pa, and a constant 
pressure of 30 MPa was used with a heating rate of 90°C/min. 
Following SPS, SPS-sintered discs with sizes of Ø20 mm by ~8 mm 
were obtained, and specimens for subsequent tests were cut by elec-
trical discharge machining.

Microstructural characterization
A Bruker D8 ADVANCE x-ray diffractometer with a Cu K radia-
tion was used to analyze the powders and bulk samples. EBSD was 
performed using an Oxford Instruments Nordlys Nano detector that 
is equipped to a Phillips XL-30 SFEG SEM. An Oxford Channel 5 
software was adopted to analyze the EBSD data. In addition, a JEOL 
JEM-2100 (200 kV) and a JEOL JEM-2500SE (200 kV) TEM with 
SAED and with EDS were used to observe the microstructure and to 
obtain chemical compositions of the Fe25Co25Ni25Al10Ti15 HEA. TEM 
specimens were first polished to ~20 m and then thinned to elec-
tron transparency by ion milling.

In situ SEM microtensile testing
Microtensile coupons were prepared by focused ion beam (FIB) on 
an FEI Quanta 3D dual beam (SEM/FIB) using a semiautomated 
“lathe-milling” procedure described in detail in (40). The resulting 
microtensile coupons have a cylindrical gauge section with an aver-
age diameter of 4 m and a length of 12 m.

Uniaxial tension tests were performed under electron beam 
observation using a nanomechanical testing system (model FT-
NMT03, FemtoTools, Buchs, Switzerland) at room temperature in 
displacement-controlled mode with a nominal strain rate of 1 × 10−3 s−1. 
The force was measured by a micro-electro-mechanical system 

Fig. 5. Tensile strength-failure strain plot of selected HEAs. It reveals that the 
bulk Fe25Co25Ni25Al10Ti15 HEA shows the highest tensile strength in comparison 
with available literature data for HEAs having high tensile strength.
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(MEMS)–based microforce sensor (model FT-S200’000), whose 
50-m by 50-m flat probe tip was milled into a tensile grip by FIB 
(see fig. S8). A sample displacement was measured simultaneously 
using a piezo-based actuation system with subnanometer resolu-
tion. Platinum reference markers were electron beam deposited on 
both ends of the gauge section to enable relative displacement mea-
surements in post processing. Marker positions were tracked frame-
by-frame using a custom MATLAB script to calculate the sample 
elongation.

In situ compression testing in TEM
A FEI Quanta 3D dual beam (SEM/FIB) system was used to prepare 
pillars with the geometry of 1500 nm by 850 nm by 120 nm. In situ 
TEM compression tests were conducted at room temperature using 
a Hysitron picoindenter 95 equipped with a flat tip in a JEOL JEM-
2800 TEM operating at 200 kV. The uniaxial compression tests were 
performed in displacement-controlled mode with an axial displace-
ment rate of 3 nm s–1. A Gatan one-view charge-coupled device 
camera was used to record time-resolved TEM images of the regions 
of interest at 30 frames per second.

Computational methods
The CALPHAD (CALculation of PHAse Diagrams) method was 
adopted to perform the nonequilibrium simulation using the 
Thermo-Calc Software Version 2017a. On the basis of the Thermo-
Calc HEA thermodynamic database (TCHEA2), the Scheil-Gulliver 
model (38, 39) was applied to simulate the nonequilibrium-localized 
fcc phase region, where ′ and * nanoprecipitates could coexist as 
a hierarchical structure in the fcc  matrix.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/10/eaat8712/DC1
Alloy design strategy
Fig. S1. TEM of the bulk Fe25Co25Ni25Al10Ti15 HEA.
Fig. S2. Twins in the primary fcc phase.
Fig. S3. HRTEM images of hierarchical precipitates.
Fig. S4. Sequential snapshots from a video recorded during the in situ TEM compression test.
Fig. S5. Fracture morphology after in situ SEM microtensile testing.
Fig. S6. X-ray scattering and microstructure of the Fe25Co25Ni25Al10Ti15 HEA powders.
Fig. S7. The Scheil-Gulliver simulation of the nonequilibrium fcc phase region.
Fig. S8. SEM micrograph of the microforce sensor’s flat probe tip with custom-milled tensile 
grip geometry.
Table S1. EDS/TEM and EDS/STEM results of the phases in the bulk Fe25Co25Ni25Al10Ti15.
Table S2. Processing routes and microstructures of selected HEAs.
Movie S1. During the initial deformation, dislocations were first generated in the  matrix, and 
as the displacement increased, dislocations sheared the hierarchical ′ and * precipitates.
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