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Vertebrates have a vast array of epithelial appendages, including scales, feathers, and hair. The developmen-
tal patterning of these diverse structures can be theoretically explained by Alan Turing’s reaction-diffusion
system. However, the role of this system in epithelial appendage patterning of early diverging lineages (com-
pared to tetrapods), such as the cartilaginous fishes, is poorly understood. We investigate patterning of the
unique tooth-like skin denticles of sharks, which closely relates to their hydrodynamic and protective
functions. We demonstrate through simulation models that a Turing-like mechanism can explain shark den-
ticle patterning and verify this system using gene expression analysis and gene pathway inhibition experiments.
This mechanism bears remarkable similarity to avian feather patterning, suggesting deep homology of the sys-
tem. We propose that a diverse range of vertebrate appendages, from shark denticles to avian feathers and mam-
malian hair, use this ancient and conserved system, with slight genetic modulation accounting for broad
variations in patterning.

INTRODUCTION
Vertebrates have a plethora of diverse epithelial appendages, including
hair, feathers, scales, spines, and teeth (1). Recent research has revealed
that these structures share extensive developmental homology, as they
grow from a common foundation: the epithelial placode (2–4). Despite
this shared ancestry, there are broad variations in both the final mor-
phology and the spatial arrangement of these organs (1). Such variation
in patterning has evolved to facilitate diverse functions, for example,
drag reduction, thermoregulation, and communication (5–7).

Alan Turing’s reaction-diffusion (RD) model provides an explana-
tion for the diversity of patterning observed in nature (8–12). This
model describes how interactions betweenmorphogens diffusing differ-
entially through a tissue can give rise to autonomous patterning of ep-
ithelial appendages (8, 13). These morphogens typically constitute two
interactive molecular signals that occupy the role of a short-range acti-
vator and long-range inhibitor (14). The autocatalytic activator pro-
motes its own expression and expression of the inhibitor, which, in
turn, represses the activator. Turing demonstrated that when tuned ap-
propriately, the nonlinear reaction kinetics and difference in diffusion
coefficients can result in the formation of a stable periodic pattern in a
field of initially homogenous signal, inwhich peaks of activator alternate
with the inhibitor (15). This self-organizing system defines the spatial
distribution of placodes and therefore the patterning of epithelial ap-
pendages. It is worth noting that in addition to RD, other factors such
asmechanosensation of the tissuemay be important for controlling skin
appendage patterning (16). In this case, the patterning may still be via
Turing instability, but using mechanical in addition to molecular RD
interactions (17). We refer to this as a Turing-like system.

There is a growing body of experimental research supporting RD
modeling throughout epithelial appendage development. This includes
the role of RD in both patterning and morphogenesis of feathers and
hair (18–21). These studies have revealed that molecular signals such

as fibroblast growth factors (FGFs) and sonic hedgehog (Shh) can play
autocatalytic activatory roles, whereas bone morphogenetic proteins
(BMPs) can act as inhibitors (18, 22). Despite evidence for RD pat-
terning in classic tetrapod model organisms (i.e., mouse and chick),
our understanding of this system in earlier diverging lineages is limited.

Chondrichthyans (cartilaginous fishes) occupy the sister lineage to
osteichthyans (bony vertebrates) and constitute an earlier diverging
lineage with respect to tetrapods. The elasmobranchs (sharks, skates,
and rays) are a subclass of Chondrichthyes, which have hard, miner-
alized epithelial appendages known as odontodes. Odontodes include
teeth and dermal denticles, which consist of a pulp cavity encased
within layers of dentine and enameloid (23). It is thought that odon-
togenic competence originated in the dermal skeleton, giving rise to
denticles as a precursor to the oral dentition of vertebrates (24–26).
These structures have been observed in early vertebrates that lived
as long as 450 million years ago (27, 28). Denticles have evolved to
fulfill a variety of functions, including provision of drag reduction
and protective armor (5, 29). It has previously been suggested that
shark denticles do not follow a strict spatial pattern (30, 31), although
they do exhibit both intraspecific and interspecific variation in mor-
phology and patterning, which closely relates to their function (32, 33).
Recent research has suggested that an RD mechanism may underlie
the arrangement of denticles in a fossil adult Cretaceous shark (Tribodus
limae) (34). However, experimental evidence addressing the initiation
of patterning, and its genetic basis, is required to ascertain the role of this
system in elasmobranchs.

Reif’s inhibitory field concept is considered the leading hypothesis
for explaining odontode patterning (35). This theory describes how dif-
fusion from existing odontodes can dictate the proximity of contempo-
raneous units, preventing placode formation within the perimeter of
inhibition zones surrounding existing teeth or denticles (35, 36). How-
ever, no underlying molecular basis has been identified to support this
idea. In fact, it has been described as a verbal description of a restricted
parameterization of an RD system (34).

There is thought to be earlymorphogenetic similarity between shark
denticle and chick feather patterning, the latter of which is controlled by
RD (18, 37). Chick feathers initially develop sequentially in a dorsal lon-
gitudinal row along the embryo’s midline. This initiator row triggers
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activatory and inhibitory morphogens in the RD model to predict this
diversity in elasmobranch denticle density.

Model parameters were initially set to result in a catshark-like den-
ticle pattern (Figs. 1, K to M, and 5, D and G). The inhibitor’s con-
stitutive degradation rate (dv) and maximum net production rate
(Gmax) were then decreased, while its diffusion coefficient (Dv) was
increased (table S1). Initiator spots were enlarged and spaced further
apart to reflect the dorsal row of the skate (Fig. 5E). This led to decreased
density of coverage, giving rise to patterning comparable to the thorn-
back skate (Fig. 5, E and H). Next, the activator’s constitutive produc-
tion rate (cu) was decreased (table S1). This further reduced the density
of coverage, giving rise to patterning comparable to the little skate
(Fig. 5, F to I). It is worth noting that numerous alternative combina-
tions of parameter values could result in similar outputs to those shown
here (Fig. 5, G to I), as well as outputs vastly more diverse (9). Overall,
these results demonstrate that simple alterations to parameters of the
RDmodel can give rise to a wide diversity of patterning outcomes com-
parable to those seen in extant elasmobranch species. The plasticity of
this systemmay underlie broad variations covering the vast spectrumof
vertebrate epithelial appendage patterns.

DISCUSSION
Our results provide both theoretical and experimental evidence to sug-
gest that shark denticle patterning is controlled by a conserved Turing-
like system also known to mediate the feather patterning of chicks (18).

This mechanism has likely controlled epithelial appendage develop-
ment for at least 450 million years, spanning the evolution of verte-
brates, from sharks to mammals (9, 21, 28). This system includes a
dorsolateral initiator row that triggers the emergence of surrounding
appendages, controlled by functionally conserved activators and inhibi-
tors, including fg f4, shh, and bmp4 (18). In addition, we show that
altering the parameters of this system can explain denticle pattern di-
versity observed between different elasmobranch species.

Previous experimental work investigating RD patterning has broad-
ly focused on its role throughout amniotes, specifically mice and chicks
(18, 21). In addition, the rearrangement of zebrafish pigmentation
following partial stripe ablation is concurrent with an RD system
(52). Denticle patterning following bead implantation bore notable si-
milarity to this experiment (Fig. 4); in both systems, the gap in the orig-
inal row was occupied by infilling from adjacent rows. We provide
evidence for Turing-like patterning in chondrichthyans. This supports
both experimental and theoretical work, suggesting that Turing
patterning is of widespread importance throughout vertebrate evolu-
tionary history and is common to taxonomically diverse vertebrate
groups (9).

Furthermore, we demonstrate that alterations to the parameters of
this system can explain the diversity of epithelial appendage patterns
between different species (Fig. 5).Within elasmobranchs, this may have
facilitated the evolution of various species-specific denticle functions,
including protective armor, hydrodynamic drag reduction, feeding,
and communication (5, 7, 29, 33, 53). More broadly, this system may

Fig. 3. Conserved markers of RD are expressed during shark denticle patterning. The expression of genes thought to control RD patterning of chick feathers was
charted during shark denticle patterning (17). (A to C) At stage 32 (~80 dpf), shark dorsal denticle placodes express fgf4 and shh, which are considered activators of
feather patterning, and bmp4, which is considered an inhibitor (17). (D and E) Dorsal rows also express fgf3, a dermal marker of feather bud development, and runx2,
which is associated with FGF signaling during mammalian tooth development (44, 45). (F to O) Later in stage 32 (~100 dpf), these genes are expressed during
patterning of adjacent, parallel rows of body denticle placodes. (P to R and T) Section ISH of body denticles revealed epithelial expression of shh and mesenchymal
expression of fgf4, bmp4, and runx2. (S) Expression of fgf3 was observed in the epithelium and mesenchyme. White dashed lines separate columnar cells of the basal
epithelium and the underlying mesenchyme. Scale bars, 500 mm (A to E), 2000 mm (F to J), 1000 mm (K to O), and 50 mm (P to T).
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samples were imaged using a Nikon SMZ15000 stereomicroscope,
and sections were imaged using an Olympus BX51 microscope and
OlympusDP71Universal digital camera attachment.Vibratome sections
shown in Fig. 4 were cut at a thickness of 30 mm. Adjustments to image
contrast and brightness were made to improve clarity. Scale bars were
added using Fiji (57).

Bead implantation experiments
Embryos were treated with Affi-Gel Blue beads (Bio-Rad) loaded with
SU5402 (2 mg/ml; Sigma) in DMSO. Control beads were loaded with
DMSO. Stage 31 (~75 dpf) embryos were removed from their egg cases
and anaesthetized before beads were surgically implanted using
sharpened tungsten wire. Embryos were then cultured in six-well plates
with artificial salt water and 1%penicillin-streptomycin (ThermoFisher
Scientific). At stage 32 (~100 dpf), embryos were transferred to 70-ml
plastic containers (Sarstedt) floating in a 200-liter tank. The number of
replicates and observed effects for different analyses are shown inTable 1.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/11/eaau5484/DC1
Fig. S1. Phylogenetic gene trees reconstructed from protein coding sequences extracted from
www.ensembl.org.
Fig. S2. Dorsal denticle placodes are not visible at stage 31 (~70 dpf).
Fig. S3. Individual vibratome section images comprising false-colored ISH composite images.
Fig. S4. Replicates of beaded shark embryos after whole-mount ISH.
Fig. S5. Replicates of clear and stained shark embryos showing RD response to SU5402
beading.
Fig. S6. SEM images of shark embryo 75 days after beading.
Table S1. Activator and inhibitor values for RD model.
Python script for RD simulations
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