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Fig. 2. Mitochondrial maximum likelihood phylogeny of ancient and contemporary Aboriginal Australian mitogenomes. Mitochondrial maximum likelihood
phylogenetic relationships among ancient subgroups (bold) and contemporary Aboriginal Australians are shown. Colored segments indicate separate mitochondrial

haplogroups.

nuclear sequences. We found that, by modifying the hybridization
temperature to 57°C, the genome coverage obtained was significantly
enhanced.

All recovered ancient sequences exhibited damage patterns char-
acteristic of ancient DNA, with elevated levels of cytosine to thymine mis-
incorporations in the 5’ end of fragments and guanine to adenine
misincorporations in the 3" end (Materials and Methods). In addition,
contamination estimates for both mitochondrial and genome-wide se-
quences all displayed low contamination levels (Materials and Methods).

Establishing comparative contemporary DNA datasets
We used the recovered ancient Aboriginal Australian mitogenomes
and nuclear genomes as proxies for unprovenanced remains to deter-
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mine whether we could accurately identify their geographic origins
using DNA-based methods. While we successfully recovered four
partial or complete Y chromosomes from ancient male Aboriginal
Australians, previous research on contemporary Aboriginal Australian
males (16, 18, 19) has shown considerable levels of Eurasian admixture,
with large numbers of research participants carrying non-Indigenous
Y-chromosome haplotypes. The level of Eurasian admixture observed
in contemporary Aboriginal Australian males varies greatly, with be-
tween ~32 and ~70% being observed in different regions of Australia
(16, 18, 19). Undeniably, there has been a significant loss of Aboriginal
Australian Y-chromosome genetic diversity since European settlement,
perhaps with entire lineages lost to the past. This Y-chromosome
admixture makes it extremely difficult to obtain a clear picture of the
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Fig. 3. Genetic structure of ancient and contemporary Aboriginal Australians. (A) First two principal components of a PCA of individuals from non-African popula-
tions, with ancient individuals (black outlines) projected. (B) Supervised admixture of contemporary Australians using five putative ancestry sources. Many modern
Australians show evidence for European (French; orange stars) or East Asian (Han; blue diamonds) admixture. All ancient individuals cluster tightly with previously

described Australian Aboriginals without recent admixture (WCD).

paternal genomic history of Aboriginal Australians and, as such,
would hinder attempts to find possible ancestral connections for repa-
triation purposes.

We constructed comparative contemporary mitochondrial and
nuclear DNA datasets based on self-reported language group affilia-
tions (16, 20), as well as geographic locations (Fig. 1). The contem-
porary nuclear DNA dataset comprised 100 high-coverage nuclear
genomes of Pama-Nyungan language—speaking Aboriginal Australians.
A total of 112 mitogenomes showing Aboriginal Australian-specific
mitochondrial haplogroups were included in the mitochondrial
DNA analyses, including 17 previously published genomes (table S3)
(14, 21, 22).

As these contemporary datasets were assembled for the purpose
of repatriation, they required a high degree of accuracy. Therefore,
only previously published contemporary DNA sequences of known
geographic origin and/or language group were used (14, 16, 21, 22).
The recent publication of 111 mitogenomes recovered from historic
hair samples from locations in Queensland and South Australia was
not included, as the deposited sequences lacked precise geographic
identifiers (15).

Mitochondrial genetic affinities

Using mitochondrial maximum likelihood phylogenetics (fig. S2),
we compared 29 ancient Aboriginal Australian mitogenomes (14)
with the 112 contemporary mitogenomes we previously assembled
(Fig. 2). We observed 38 distinct mitochondrial haplogroups, with
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novel subclades discovered within mitochondrial haplotypes M42c *,
R12a *, R12b *, and M42a3, while new subtypes were found for most
other mitochondrial haplotypes (Supplementary Materials). For 18 an-
cient Aboriginal Australian individuals (62.1%), the closest contempo-
rary match was an individual from the same geographic region (within
235 km). Within this group, nine ancient individuals could be matched
to a contemporary individual within 100 km, and six could be matched
to individuals from the exact location from which the ancient remains
originated (Fig. 1).

For the remaining 11 ancient individuals (37.9%), the results were
either inconclusive due to a lack of contemporary matches or because
some mitochondrial haplotypes were geographically widespread. It
has been previously documented that some Aboriginal Australian
mitochondrial haplotypes have widespread distributions across the
continent, while others are regional specific (15, 16, 23-25), reflecting
ancient female migration patterns. While this is an interesting anthro-
pological finding and may potentially inform the time depth of these
practices, it is less helpful for repatriation. In two instances (6.9%), the
closest ancient mitochondrial matches were not from the same geo-
graphic locations. In this case, the closest contemporary matches were
individuals from opposite sides of Cape York Peninsula, some 635 km
away (Fig. 1). As the return to Place and Country of ancestral remains
is of paramount importance to many Aboriginal Australian commu-
nities, repatriation to an incorrect Country would be problematic.
Therefore, the use of mitochondrial DNA alone is not recommended
for repatriation.
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Fig. 4. Genetic affinities between ancient and contemporary Aboriginal Australians. (A) Modern Australians projected onto a PCA inferred from the five higher-
coverage ancient individuals covering all geographic regions samples. Inset shows full PCA including ancient individuals, and larger plot shows zoomed region of
modern individuals only (dashed box in inset). Polygons and large symbols indicate the range and median of the principal components for each modern population,
respectively. (B) Multidimensional scaling based on pairwise genetic drift sharing (outgroup f; statistics) between ancient individuals and modern populations (using
masked data). The results highlight the considerable genetic structure among ancient Aboriginal Australians. In both analyses, modern individuals show closest affi-

nities with ancient individuals from the same geographic region.

Nuclear genetic structure of ancient and

contemporary populations

Subsequently, we performed a series of analyses on the 10 ancient
Aboriginal Australian nuclear genomes recovered. To investigate
the overall genetic structure of ancient and contemporary Aboriginal
Australian populations, we analyzed the individuals in the context of a
reference panel including 2117 modern individuals from worldwide
populations genotyped for 593,610 single-nucleotide polymorphisms
(SNPs) (26, 27). Principal components analysis (PCA) and supervised
model-based clustering (ADMIXTURE) revealed high levels of recent
admixture across many Aboriginal groups, particularly those from
Bourke (BKM) and Willandra Lakes (WIL) (Fig. 3). While most of
the recent admixture is European in origin, we also observed evidence
of East Asian gene flow, particularly among individuals from North
Queensland (CAI and WPA). In contrast, individuals from the West-
ern Central Desert (WCD) were almost completely unadmixed and
were therefore subsequently used as a reference group for Aboriginal
Australian ancestry in local admixture inference and masking, using
previously described methods (16). All of the ancient Aboriginal Australian
samples were found to cluster close to the unadmixed WCD individuals
(without apparent European admixture), as expected.

Nuclear genetic affinities

We investigated the genetic relationships among the ancient
Aboriginal Australian individuals using both PCA and outgroup f;
statistics. These analyses revealed substantial genetic structure be-
tween individuals from different geographic regions, with three dis-
tinct clades observed (Fig. 4, A and B). To further characterize their
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relationships, we fitted the highest-coverage ancient individual from
each region onto an admixture graph using qpGraph (Fig. 5). We
found that the deepest divergence separated the ancient individual
from Kalgoorlie/Golden Ridge (ANC) from all remaining individuals.
Within the eastern clade, we identified a trifurcation among the three
major geographic regions (Fig. 5) without any apparent closer rela-
tionship between the groups from north-western (MH8 and WPAH4)
and north-eastern Queensland (PA86) with respect to the individuals
from New South Wales (WLH4 and KP1) (Fig. 5). Notably, we de-
tected ~13% Papuan-related ancestry in the individual from Cairns
(PA86). This was also observed for contemporary individuals from
the same region (20).

We next sought to determine whether the ancient Aboriginal
Australian individuals were most closely related to the individuals with
known traditional connection to the same region, thereby facilitating
repatriation. Genetic clustering using PCA or outgroup f; statistics
both suggested a higher genetic affinity of the ancient individuals to
local contemporary groups, compared to contemporary Aboriginal
Australians from other geographic locations (Fig. 4). We further inves-
tigated these patterns using f; statistics in the form of f,(Mbuti,Ancient;
Contemporary,Papuan) on the masked dataset. This measured the
amount of excess allele sharing of an ancient Aboriginal Australian in-
dividual with a given contemporary group when compared to Papuans.
We found that the local contemporary groups consistently showed the
highest level of sharing with the respective ancient Aboriginal Australian
individual, supporting long-term local population continuity (Fig. 6). This
finding is in concordance with previous studies of Aboriginal Australian
skeletal remains (28, 29). For the two higher-coverage ancient Aboriginal
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Fig. 5. Admixture graph models for the population history of ancient Aboriginal Australian genomes. Three admixture graph models for Aboriginal Australians
including each major regional group (represented by the respective highest-coverage ancient individual) are shown. While all three models fit the data with |Z] < 3
(worst f statistic indicated below each graph), only the topology where individuals from north-western Queensland (WPAH4 and MH8) form an outgroup to north-
eastern Queensland (PA86) and New South Wales (KP1 and WLH4) (left panel) results in no trifurcation (branches with length zero highlighted in red in the other two
topologies). Individual PA86 is fit as a mixture with 13 to 15% of Papuan-related ancestry in all three models.

Australian individuals (KP1 and MHS8), we additionally carried out
haplotype sharing analyses. As previously supported with the allele
frequency-based results, the largest excess haplotype sharing for
both KP1 and MH8 was also with the local contemporary group
(fig. S8).

DISCUSSION

Our analyses of the first ancient nuclear genomes of Aboriginal
Australians reveal substantial past population structure. This result
confirms the previous identification of an east versus west genetic
divide between the contemporary Australian populations (16)
while, at the same time, revealing further major geographic sub-
division. When combined with the strong genomic affinities ob-
served among ancient and contemporary populations from the
same geographic locations, we showed that we could use these find-
ings to reliably repatriate ancient unprovenanced remains to the
correct Place and Country.

Over a long period, mitochondrial and Y-chromosome sequences
have proved to be highly informative genetic markers for a diverse
array of applications. This includes phylogenetic reconstruction, tim-
ing of divergent events, and tracing the spread of humans worldwide
(30). Some researchers, as a result of a biogeographic study of mito-
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chondrial DNA diversity (15), have proposed that these genetic
marker sequences can be used to facilitate repatriation. However, in
contrast, one of the major findings of the current study is that mito-
chondrial DNA sequence variation performs poorly in this regard.
Our results suggest that mitochondrial sequences, if used in repatria-
tion efforts in the Australian context, would result in a significant per-
centage (~7%) of remains being returned to the wrong Indigenous
group.

We show that even under the arid conditions of Australia, low-
coverage nuclear genomes can be recovered, and more importantly,
these low coverage genomes can be used to precisely and accurately re-
patriate ancient remains. Furthermore, with advances in DNA capture
and recovery methods, as well as with improvements in SNP analyses
and the decreasing costs of genome sequencing, this general approach is
likely to become more affordable and effective over time. We propose
that our approach can be used now and will be used routinely in the
future to return remains to their rightful kin. This approach could also
allow for the identification of Place for members of the Stolen Genera-
tion. Because of the colonial history of removing children from their
families, these people have lost not only their links to but also any
knowledge of the location of their Country.

Our findings also suggest that a similar approach could be used to
facilitate the repatriation of Indigenous remains in other countries
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Fig. 6. Allele sharing between ancient and contemporary Aboriginal Australians. Each panel shows f; statistics of the form f, (Mbuti,Ancient;Modern,Papuan).
Negative values indicate the amount of excess allele sharing of the respective ancient individual with a contemporary Australian group (y axis) compared to Papuans
(masked dataset). Error bars show three SEs obtained from a block jackknife. Contemporary groups are sorted according to the amount of excess allele sharing in each
panel. Notably, ancient individuals show the highest amount of sharing with their respective local contemporary group.

with a known ancient population history and a contemporary data-
base. This would represent a major scientific and social advance.

MATERIALS AND METHODS
Ancient DNA laboratory methods
All pre-PCR procedures were carried out in a dedicated Ancient DNA
facility in the Australian Research Centre for Human Evolution, Griffith
University. The facility is sealed, geographically isolated from any mod-
ern molecular laboratory, and has one-way airflow under positive pres-
sure, and the air is high-efficiency particulate air (HEPA)-filtered. The
skeletal remains and hair samples were processed within an ultraviolet-
sterilized ultralow particulate air (ULPA)-filtered vertical laminar flow
cabinet (used for this purpose only). Each sample was initially treated
with 10% bleach to remove any surface contaminants and then washed
with UltraPure DNase/RNase-Free Distilled Water (Invitrogen) to re-
move any remaining bleach.

Skeletal material was processed using a Dremel rotary tool with a
high-speed diamond cutter head or manually with a sterilized scalpel
blade, where the outer surface was discarded. DN A was extracted from
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~50 mg of bone or tooth powder, as previously described (13). Extrac-
tion blanks were included throughout all procedures. Hair samples
were processed in 2 to 4 ml of digestion buffer, as previously described
(14). This solution was incubated in a rotating incubator oven for
24 hours at 45°C. After complete digestion, the samples were centri-
fuged at 9000g for 3 min. The supernatant was combined with 10x
volume of a modified binding buffer [500 ml of buffer PB (phosphate
buffer; Qiagen), 1:250 pH indicator I, 15 ml of 3 M NaOAC (pH 5.2),
and 1.25 ml of NaCl]. Extractions were purified using the MinElute
Reaction Cleanup Kit (Qiagen) following the manufacturer’s protocol
and eluted using 100 pl of buffer EB (elution buffer; Qiagen) after in-
cubation for 10 min at 37°C.

Ancient DNA library construction, amplification,

and screening

Double-stranded Illumina DNA libraries were built according to the
methods previously described (13, 14, 31), with some minor modifica-
tions in the Taq polymerase used for amplification. Libraries built
from different samples were amplified using different polymerases
(table S2). All libraries were screened on a Bioanalyzer 2100 (Agilent)
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to ensure that the DNA length distributions did not show any significant
artifacts from amplification, e.g., artificially long molecules due to serial
binding or primer dimers. Where these problems occurred, the number
of PCR amplification cycles or primer concentration was adjusted. All
PCR and extraction blanks were screened for contaminant library
constructs on the Bioanalyzer.

Whole-genome in-solution target capture

Between 100 and 500 ng of library, amplified DNA was generated as
described above using multiple secondary amplifications, some of which
were sent for direct sequencing. DNA libraries were subjected to cus-
tom myBaits whole-human genome capture (Arbor Biotechnologies).
Target capture enrichment was performed according to the manufac-
turer’s instructions; however, hybridization was performed for 36 to
42 hours at 55° to 57°C. The bead-binding buffers, initial 30-min incu-
bation, and cleaning steps were also performed at this chosen hybrid-
ization temperature. Postcapture libraries were amplified on binding
beads using the Kapa HiFi Uracil+ kit (Kapa Biosystems) according
to the myBaits manual (version 3) for between 14 and 17 cycles.

Ancient sequencing

Ancient samples were sequenced using 100-base pair single-end
reads. This sequencing was conducted using either a HiSeq 2500 Se-
quencing System (Illumina) at the Danish National High-Throughput
DNA Sequencing Centre in Copenhagen or on a MiSeq Sequencing
System (Illumina) using 150 version 3 kits at the Griffith University
DNA Sequencing Facility. Sequences were base called using CASAVA
1.8.2 (Illumina).

Contemporary sequencing

DNA library construction and sequencing of contemporary samples
were conducted at the Kinghorn Centre for Clinical Genomics at the
Garvan Institute in Sydney, Australia or Novogene Bioinformatics
Technology Corporation Limited in Beijing, China. Sequencing
libraries were generated using the Truseq Nano DNA HT Sample
Preparation Kit (Illumina, USA) following the manufacturer’s recom-
mendations. Libraries were then 150-base pair paired-end sequenced
on an Illumina HiSeq X. Genome coverage of this sequencing aver-
aged between 45-60 x.

Ancient DNA mapping and consensus calling

Adapters were trimmed from the sequencing data using fastx_clipper,
part of the FASTX-Toolkit version 0.0.13 (http://hannonlab.cshl.edu/
fastx_toolkit/) using parameters -Q 33 - 30. Levels of human DNA
were determined by mapping reads to the human reference genome
(GRCh37/hg19) or the revised Cambridge reference mitochondrial
genome (32). Mapping was completed using BWA version 0.6.2
(33) with the following options: seed disabled (34) with terminal
low-quality trimming (-q 15), before being aligned using BWA-0.6.2
aln with seed disabled. The mapped reads were sorted, and duplicates
were removed and merged using SAMtools version 0.1.18 (35, 36).

Contemporary data processing

The paired-end contemporary DNA sequences were mapped to the
human reference genome (GRCh37/hg19) or the revised Cambridge
reference mitochondrial genome (32) using BWA version 0.6.2 (33).
Duplicate sequences were then removed from Alignment/Map (SAM)
files using SAMtools (35, 36). Using the mpileup command, with a
maximum depth parameter of 1000, variant call format (VCF) files
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were generated for each chromosome separately. Using an awk
command, indel variations were excluded. The VCEF files of individual
modern genomes were merged using VCFtools (37) after zipping and
indexing using tabix.

Mitochondrial maximum likelihood phylogenetics
Consensus mitogenomes were generated, and ambiguous bases were
checked and manually corrected. Mitochondrial haplotypes were
identified using HaploGrep 2.0 software (38), with mitochondrial
variations described in PhyloTree mtDNA Build 17 (39). Alternative-
ly, haplotypes were identified manually, and novel ones were named
in accordance with recent Aboriginal Australian mitochondrial
haplogroup classifications (24).

All mitogenomes were aligned using SeaView version 4.6.1 (40).
The mitochondrial evolutionary history of Aboriginal Australians
was inferred using the maximum likelihood method based on the
Tamura-Nei model (41) with 1000 bootstrap replications, as imple-
mented in MEGA?7 (42). The tree with the highest log likelihood
(—19648.2315) was used (Fig. 2). Initial tree(s) for the heuristic search
were obtained by applying Neighbor-Joining and BioNJ algorithms to
a matrix of pairwise distances estimated using the maximum
composite likelihood approach and then selecting the topology with
a superior log likelihood value. A discrete Gamma distribution was
used to model evolutionary rate differences among sites (categories
+G, parameter =). This rate variation model allowed for some sites
to be evolutionarily invariable ([+I], % sites).

The final tree was drawn to scale, with branch lengths measured in
the number of substitutions per site and involved 141 mitochondrial
sequences. All positions containing gaps and missing data were elimi-
nated, and a total of 11,042 nucleotide positions were used in the final
dataset. Subsequent annotation and presentation of the tree were com-
pleted using Interactive Tree of Life version 3.4.3 software (43).

Analysis panel
Genotyping of newly sequenced as well as previously reported modern
individuals was carried out using SAMtools/bcftools (35), followed by
filtering, as previously described (44). Briefly, per-individual diploid
genotypes were called using SAMtools mpileup (-C50 option) and
bcftools call with the consensus caller (-c option). Calls from each ge-
nome were then filtered, excluding calls with low (six reads or one-
third of the average sequencing depth, whichever was higher) or high
(>2 times the average depth) coverage. We further filtered variants
called within 5 base pairs of each other, with a Phred posterior prob-
ability of < 30 or a strand bias or end distance bias P value of <10*, or
with deviations from Hardy-Weinberg equilibrium with a P value of
<10* across all samples.

For population genetic analyses, those genotypes were merged with
a reference panel of 2286 modern individuals from worldwide popu-
lations, genotyped at 593,610 SNPs using the Affymetrix Human Ori-
gins array (26, 27). All ancient individuals were represented by
pseudo-haploid genotypes obtained by sampling a random allele at
each SNP position. For the two ancient samples with higher coverage,
KP1 (6.9x) and MH8 (6.8x), we also carried out diploid genotyping, as
described above, to be used in the haplotype sharing analyses.

Population structure and admixture modeling

PCA was carried out using smartpca (45) by projecting ancient indi-
viduals onto the components inferred from modern individuals using
the “Isqproject” option. Genetic affinities of ancient and modern
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individuals were investigated using the f-statistic framework (46).
We used “outgroup f;” statistics to determine the amount of shared
genetic drift between pairs of individuals and/or groups, as well as
fa statistics for allele sharing symmetry tests (tables S5 and S6).
Model-based clustering implemented in ADMIXTURE was used to
investigate patterns of recent admixture, in supervised mode using
European (French), East Asian (Han), Oceanian (Papuan), and
Australian (WCD) individuals as putative source populations.

Local ancestry inference

Local ancestry deconvolution of the modern individuals was carried out
using REMix (47) and a panel of four reference populations: European
(French), East Asian (Han), Oceanian (Papuan), and Australian (WCD).
Before this analysis, we subsampled each reference population to the
number of individuals observed in the smallest population (WCD;
12 individuals) to avoid potential bias due to unbalanced panel sizes.
A “masked” dataset was then obtained by restricting the analysis to SNPs
for individuals who were homozygous for Australian ancestry (WCD).

Haplotype sharing analyses

Haplotype sharing among modern Australians and the two highest-
coverage ancient individuals (KP1 and MH8) was inferred using
ChromoPainter (48). Haplotype phase was reconstructed for the full
set of individuals with diploid genotypes using Shape-IT (49). We then
performed chromosome painting for the two ancient individuals as
recipients, using all modern Australians, as well as selected outgroups
(French, Han, Papuan, and Bougainville) as potential donors. Differ-
ential sharing for the pair of ancient individuals was quantified using
the symmetry statistic (50)

B Donor A — Donor B
~ Donor A + Donor B

S (A, B)

SEs were obtained using a block jackknife across the 22 autosomes.

Ancient DNA authentication

Recovered ancient DNA sequences were authenticated using a num-
ber of methods. First, DNA damage patterns were estimated for each
sample using mapDamage software (51). Samples showed a mean
fragment length of 49.2 to 97.4 base pairs, with higher fragment
lengths observed in the better-preserved hair samples. All samples ex-
hibited damage patterns characteristic of ancient DNA, with elevated
levels of cytosine to thymine misincorporations in the 5" end of frag-
ments and guanine to adenine misincorporations in the 3" end (52)
(table S2).

Ancient DNA contamination estimates
Mitochondrial contamination estimates were obtained using the
contDeam and Schmutzi command in the Schmutzi software package
(53). The estimates obtained from contDeam are based on the assump-
tion that only endogenous DNA has deamination patterns typical of
ancient DNA and that contaminant fragments are not deaminated
and will therefore only reduce overall deamination rates. The Schmutzi
command iteratively refines contamination estimates and produces
consensus calls (results are presented in table S2). We excluded all an-
cient DNA libraries that showed contamination estimates higher than
3% from further merging and analyses.

It has been previously shown that deamination patterns typical of
ancient DNA are rare in remains younger than 100 years in age (54),

Wright et al., Sci. Adv. 2018;4:eaau5064 19 December 2018

and this resulted in higher contamination estimates for the historical
hair samples tested here. To verify the results obtained, we checked
both the endogenous and contaminant consensus sequences gener-
ated by Schmutzi using the SAMtools tview command (35) and
HaploGrep 2 (38). We showed that both endogenous and contami-
nant consensus sequences generated by Schmutzi carry the charac-
teristic SNPs for the same mitochondrial haplotype.

For nuclear sequences, contamination was estimated using
ANGSD for all ancient males (55). All contamination estimates gen-
erated are presented in table S2.

Supervised admixture of the ancient nuclear genomes was under-
taken using five putative ancestry sources (fig. S9). Low levels of con-
tamination from a European source were observed in some of the
low-coverage ancient samples such as PA109, although it has been re-
ported that using ADMIXTURE on low-coverage samples can result in
statistical uncertainty associated with SNP and genotype calling, result-
ing in high error rates due to sampling, alignment, and sequencing er-
rors (56). Our additional analyses using PCA confirmed that all ancient
individuals cluster tightly with previously described Aboriginal Australians
without recent admixture (WCD).

Ancient DNA sex determination

Sex determination was carried out using the method previously de-
scribed (57), comparing the morphological and archeological
information provided with each set of remains. In all instances, the
assigned sex was as expected, which also rules out contemporary con-
tamination from members of the opposite sex.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/12/eaau5064/DC1
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