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the application of the first-generation method only generated a trace 
amount of the desired product 8′ from indole 7b. This example dem
onstrates that this new strategy for the direct arylation of the indole 
C7 position is well suited to the rapid and modular construction of 
complex molecules from minimally functionalized and widely avail-
able aromatic precursors. We envision that this efficient method 
could be used for the diversity-oriented synthesis of dictyodendrin 
derivatives for future medicinal applications.

We also tested some of our newly constructed indolyl N-PtBu2 
ligands in Suzuki-Miyaura coupling reactions. In the Pd-catalyzed 
coupling of 1-chloro-4-methylbenzene (9) with phenyl boronic acid 
(10), C7-aryl indole ligands with different steric and electronic prop-
erties provided 11 in 62 to 94% yields, while parent ligand 1a only 
gave the desired product in 59% yield. These comparative results 
demonstrate the crucial role of the aryl ring directly attached to the 
C7 position of the indole scaffold. On the basis of the simplicity of 
the ligand synthesis as well as the simplicity of modifying the ligand 
skeleton, we anticipate that further enhancements in the reactivity 
and versatility of the C7-aryl indolyl N-PtR2 ligand series are attain-
able (Fig. 4).

DISCUSSION
To get insight into the reaction mechanism, we carried out deuteration 
experiments with a stoichiometric amount of Rh(PPh3)3Cl and tBuOLi 
in D4-MeOH. 1H nuclear magnetic resonance (NMR) analysis re-
vealed that deuteration at the C3 position of 1a gradually increased 
over time, and 67% deuterium incorporation was observed, respective-
ly, after 20 hours. Under these conditions, no D/H exchange was de-
tected in the absence of tBuOLi or Wilkinson’s catalyst, suggesting that 
base-assisted metalation occurs at the C7 position with the aid of the 
PtBu2 directing group (Fig. 5A). Moreover, the obvious D/H exchange 
was also detected when the reaction of indole D7-1a was carried out in 
the presence of the methanol. This result indicates that the C–H cleav-
age is reversible under catalytic conditions (Fig. 5B). In addition, the 
KIE (kinetic isotope effect) value of the C–H activation process was 
1.2, revealing that the C–H cleavage is fast and not involved as a 
rate-determining step (Fig. 5C) (54–57).

On the basis of the above studies and the precedent reports, plau-
sible pathways for this reaction are shown in Fig. 6. Catalytically ac-
tive rhodium species A first coordinates to the P atom of indole 1 in 
the presence of tBuOLi, which leads to the formation of complex B. A 
reversible cyclometalation through a tbutoxide-assisted deprotona-
tion at the indole C7 position delivers the intermediate C and further 
generates a rhodacycle D. Then, the oxidative addition of aryl halide 
2 to intermediate D affords E species. Subsequent reductive elimina-
tion and dissociation (F) delivers C7 arylation product 3 and regen-
erates active catalyst A (pathway A). An alternative process involves 
oxidative addition of the Wilkinson’s catalyst into aryl halide 2 (I) 

Table 3. Scope for the N-PcHex–directed C7 arylation of indoles. Reaction 
conditions: 1 (0.20 mmol), 2a (0.40 mmol), Rh(PPh3)3Cl (6.0 mol %), and 
LiOtBu (3.0 equiv) in m-xylene (1.0 ml) at 150°C, 24 hours, under Ar, 
isolated yields.

Fig. 2. Relevant steps in overall transformation. Reaction conditions: 1a (0.20 mmol), 
2 (0.40 mmol), Rh(PPh3)3Cl (6.0 mol%), and LiOtBu (3.0 equiv) in m-xylene (1.0 ml) at 
150°C, 24 hours, under Ar. DG, directing group.
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ahead of C–H activation, and then the base-assisted metalation of 
indole 1 (II) affording the same intermediate E cannot be ruled out at 
the current stage (pathway B) (12, 58, 59). Additional investigation is 
necessary to fully elucidate the details of the reaction mechanism.

CONCLUSION
In summary, we have reported an efficient C7-selective direct arylation 
of indoles with N-PR2 (R = tBu and cHex) directing groups. This reac-
tion, which uses the commercially available Wilkinson’s catalyst, does 

not require the addition of an exogenous ligand, and it is applicable 
with a broad range of coupling partners including electron-rich, electron-
poor, and sterically hindered (hetero)aryl bromides with a variety of 
indoles. This novel strategy has many advantages including the direct-
ing group being easier to access and remove, using cheaper and more 
widely available aryl bromides/chlorides as arylating agents, not re-
quiring an external ligand or oxidant, having a broader substrate scope, 
being more efficient, and producing only one regioisomer. The practi-
cality of this method was also demonstrated by the synthesis of a key 
intermediate in the synthesis of dictyodendrin B and the applications 

Fig. 3. Application as a key step in the synthesis of dictyodendrin B. Reaction conditions: (a) MeNO2, LiHMDS, 51%; (b) Pd(OAc)2 (2 mol %), Phen (4 mol %), CO (1 atm), 
DMF, 110°C, 93%; (c) tBu2PCl, or cHex2PCl, nBuLi, 92 to 95%; (c′) after procedure (c), then H2O2, 99%; (d) Rh(PPh3)3Cl (10 mol %), LiOtBu (3.0 equiv), 2d (10.0 equiv), m-xylene, 
160°C, then add dilute HCl, 10 min, 72%; (d′) Pd(OAc)2 (10 mol %), 2-Cl-pyridine (20 mol %), Cu(OTf)2 (0.5 equiv), Ag2O (2.0 equiv), CuO (1.0 equiv), dioxane, 120°C, Ar, trace 
in gas chromatography–mass spectrometry.

Fig. 4. Preliminary investigation of the developed ligands in Suzuki-Miyaura couplings of aryl chlorides. Reaction conditions: 11 (0.20 mmol), 12 (0.40 mmol), 
Pd2(dba)3 (1.0 mol%), ligand (2.0 mol%), and K3PO4 (3.0 equiv) in m-xylene (1.0 ml) and H2O (1.0 ml) at 100°C, 24 hours, under Ar.
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as a class of potential indolyl phosphine ligands. These present results 
represent an important discovery that is expected to be substantially 
extended to other new transformations.

MATERIALS AND METHODS
General information
Unless otherwise noted, all reactions were performed under an argon 
atmosphere using a flame-dried glassware. Toluene, chlorobenzene, 
and m-xylene were distilled over CaH2. All new compounds were 
fully characterized. NMR spectra were recorded on a Bruker AV-300, 
an ARX-400 MHz, or an ARX-600 Associated. 1H NMR spectra data 
were reported as  values in parts per million (ppm) relative to chlo-
roform ( = 7.26) if collected in CDCl3. 13C NMR spectra data were 
reported as  values in ppm relative to chloroform ( = 77.0) if col-
lected in CDCl3. Mass spectrometry was conducted with the Micromass 
Q-TOF Instrument (ESI) and Agilent Technologies 5973N (EI). All 
reactions were carried out in flame-dried 25-ml Schlenk tubes with 
Teflon screw caps under argon. Rh(PPh3)3Cl and [Rh(cod)Cl]2 were 
purchased from J&K. Unless otherwise noted, materials obtained 
from commercial suppliers were used without further purification.

General procedure for the synthesis of N-PtBu2 indoles  
1a to 1t
To a solution of indole (5.0 mmol, 1.0 equiv) in 10 ml of anhydrous 
tetrahydrofuran (THF) at 0°C, a solution of nBuLi (2.5 M solution 
in hexane, 2.4 ml, 1.2 equiv) was added dropwise. After stirring for 
15 min, PtBu2Cl (1.08 g, 1.2 equiv) was added dropwise. The mixture 
was allowed to stir and warm to room temperature over several hours. 
After indole was consumed as determined by thin-layer chromatog-
raphy (TLC), the reaction was quenched by 2 ml of MeOH. Then, the 

solvent was removed under reduced pressure. Further purification was 
performed through flash chromatography [petroleum ether/ethyl 
acetate (PE/EA) = 50:1] to obtain the pure product.

General procedure for the synthesis of N-PcHex2 indoles  
1a′ to 1u′
To a solution of indole (5.0 mmol, 1.0 equiv) in 10 ml of anhydrous 
THF at 0°C, a solution of nBuLi (2.5 M solution in hexanes, 2.02 ml, 
1.05 equiv) was added dropwise. After stirring for 30 min, PcHex2Cl 
(1.17 g, 1.05 equiv) was added dropwise. The mixture was allowed 
to stir and warm to room temperature over several hours. After in-
dole was consumed as determined by TLC, the solvent was removed 
by a vacuum. The crude products were purified by neutral alumina 
column chromatography with petroleum ether and ethyl acetate as 
eluent.

General procedure for N-PtBu2 directed C7 arylation  
of indoles
To a 25-ml Schlenk tube, indole substrates 1 (0.20 mmol), aryl bromides 
2 (0.30 to 0.4 mmol), Rh(PPh3)3Cl (11.1 mg, 0.012 mmol), and LiOtBu 
(48.0 mg, 0.60 mmol) were added. The tube was purged with Ar three 
times, followed by the addition of anhydrous m-xylene (1.0 ml). The 
mixture was stirred at 80° to 150°C for 24 hours. The solution was then 
cooled to room temperature, and the solvent was removed under vacuum 
directly. The crude product was purified by column chromatography 
on silica gel and gave the pure products 3.

General procedure for N-PcHex2 directed C7 arylation  
of indoles
To a 25-ml Schlenk tube, indole substrates 1′ (0.20 mmol), aryl bro-
mides 2 (0.4 mmol), Rh(PPh3)3Cl (11.1 mg, 0.012 mmol), and LiOtBu 
(48.0 mg, 0.60 mmol) were added. The tube was purged with Ar 
three times, followed by the addition of anhydrous m-xylene (1.0 ml). 
The mixture was stirred at 150°C for 24 hours. The solution was 
cooled to room temperature and 0.5 ml of HCl (4.0 M in dioxane) 
was added, and then the solution was stirred in open air at room 
temperature for 10 min. After that, 0.4 ml of Et3N was added, and 
the solvent was removed under vacuum directly. There was another 
way to work up the reaction: After the reaction was cooled to room 

Fig. 5. Deuterium labeling experiments and the study of kinetic isotope ef-
fect. n.d., not detected.

Fig. 6. Plausible reaction pathways.
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temperature, 0.5 g of silica gel was added, and the solvent was removed 
under vacuum directly. The crude product was purified by column 
chromatography on silica gel and gave the pure products 4.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/12/eaau6468/DC1
Fig. S1. Test the indole N-PPh2–directed C7 arylation reaction.
Fig. S2. General procedure for the investigation of the developed ligands in Suzuki-Miyaura 
coupling.
Fig. S3. Single-crystal x-ray structure determination of compound 3aa (CCDC no. 1838725).
Table S1. Deuteration experiments with indole 1a.
Table S2. Deuteration experiments with indole D7-1a.
Table S3. Study of kinetic isotope effect.
Data file S1. Characterization of isolated compounds.
Data file S2. X-ray crystal data of 3aa.
Data file S3. 1H, 13C, 31P, and 19F NMR spectra.
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