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Structure and dynamical behavior
of non-normal networks
Malbor Asllani1,2, Renaud Lambiotte1, Timoteo Carletti2*

We analyze a collection of empirical networks in a wide spectrum of disciplines and show that strong non-normality is
ubiquitous in network science. Dynamical processes evolving on non-normal networks exhibit a peculiar behavior, as
initial small disturbances may undergo a transient phase and be strongly amplified in linearly stable systems. In ad-
dition, eigenvalues may become extremely sensible to noise and have a diminished physical meaning. We identify
structural properties of networks that are associated with non-normality and propose simplemodels to generate net-
works with a tunable level of non-normality. We also show the potential use of a variety of metrics capturing different
aspects of non-normality and propose their potential use in the context of the stability of complex ecosystems.
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INTRODUCTION
Network science (1–3) has emerged, in the past 20 years, as an essential
framework to model and understand complex systems in a variety of
disciplines, including physics (1), economics (4), biology (5), and sociology
(6). At its core, network science views a systemas a set of nodes thatmay
be connected directly by an edge or indirectly by a succession of edges,
thereby forming paths of interactions. The bridge between network
structure and dynamics is generally unraveled by defining a linear dy-
namical model on the nodes; take, for instance, a random walk process
as a simple model of diffusion or the linearization around a critical point
of a nonlinear dynamical system (7–10). In each case, the process is
determined by a matrix, somehow related to the adjacency matrix of
the underlying network. In addition, critical aspects of the system,
such as its stability and characteristic time scales, are usually de-
scribed by the properties of its spectrum (11). Central network con-
cepts such as the spectral gap, spectral radius, and master stability
conditions all build on this interpretation. Relatedly, network spectra
also appear in network algorithms, such as in community detection
(12) or in network comparison (13).

The characterization of a linear system by its spectrum is canonical,
but it is unreliable in situations when the linear operator is non-normal;
namely, its eigenvectors do not necessarily form an orthonormal basis,
and the transformation to eigenvector coordinatesmay involve a strong
distortion of the phase space. Non-normality has a long tradition in
linear algebra and dynamical systems, from early studies in hydrody-
namics (14) tomore recentworks on the robustness of non-normal eco-
systems (15) and in neuronal dynamics (16, 17). Yet, these results
remain focused on limited areas of science, and a systematic study of
the prevalence of non-normality in real-world networks, as well as its
potential impact on dynamics, is still lacking. Here, we call non-normal
a network whose adjacency matrixA is non-normal (18). By definition,
A is non-normal if it verifiesAAT≠ATA. It is thus clear thatA needs to
be asymmetric to be non-normal or, equivalently, the network needs to
be directed to be non-normal, but, as wewill discuss inmore detail later,
asymmetry is not sufficient and certain types of network architectures
are necessary to determine a strong non-normality. Given a non-normal
network, other standard matrices, such as its Laplacian L, are also non-
normal. Non-normality can hence be quantified using a standard
spectralmeasure borrowed frommatrix theory, such asHenrici’s depar-
ture fromnormality (19),dFðMÞ ¼ jjMjj2F � ∑n
i¼1jlij2, where || ⋅ ||F is

the Frobenius norm and li are the eigenvalues of the adjacencymatrix. A
zero value is associated with a symmetric network, while the larger the
values, the stronger the non-normality.

Before going further, let us briefly illustrate in more detail the in-
fluence of non-normality on the prototypical example of a linear (linear-
ized) dynamics on a non-normal network. Without loss of generality,
we consider the model ẋ ¼ Mx, where M encodes the linear dynamics
on the network, through the dependence on L, and forms a stable
matrix; namely, the spectral abscissa a(M) = maxℜs(M) is not positive,
with s(M) being the spectrum of the matrix M. In the case of normal
networks, the solution of the linear system would consist of a linear com-
bination of exponentially relaxing modes, each with a characteristic time
scale given by the inverse of the corresponding eigenvalue; hence, the
spectral abscissa is responsible for the long-term dynamics. In situations
when the network is non-normal, however, more complex patterns may
emerge. Standard measures of non-normality of the matrix and their
relation to dynamics are provided in Table 1. IfM has a positive numer-
ical abscissa, w(M) = maxs(H(M)), where H(M) = (M + MT)/2 is the
Hermitian part of M, then the system can undergo a transient growth
before asymptotically converging to zero, as measured by the norm of
the state vector x (see Table 1A). This transient behavior cannot be ex-
plained by the picture provided by the spectrum of the matrix M (19)
and can have a strong impact once nonlinearities are at play. In situa-
tions when the dynamics is obtained from the linearization around a
critical point, this initial growth may trigger nonlinear terms, take the
system far away from the equilibrium, and thus radically reshape the
dynamical behavior of nonlinear systems (18), as shown in Table 1B.

Although a system can initially be close to an asymptotically stable
equilibrium, it can leave this state even when a moderate external per-
turbation occurs due to non-normality (19). This effect is even more
notable once one includes stochastic forces to themodel, e.g., exogenous
or demographic perturbations due to the surrounding environment
(20), as they may push even a linear, stable system out of equilibrium
when it is non-normal. Again, this behavior cannot be properly
captured by the spectrum of the linear model, nor can it be described
by thenumerical abscissa,whichonlydetermines the short-termbehavior
of the dynamics. To describe the long-term consequences of these per-
turbations, another important tool is the pseudospectrum sD(M) =
{s(M + E):∥E∥≤D}, for D > 0 (19), from which one can compute the
D–pseudospectral abscissa, replacing somehow the role of the spectral
abscissa and eventually the Kreiss constantK, which provides a direct
measure of the size of the transient amplification (see Table 1). By
1 of 8
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definition, a complex number z is an eigenvalue of M if a bounded
inverse of zI − M does not exist. The pseudospectrum is based on a
less strict definition and defines regions of the complex plane where
∥(zI−M)−1∥ is larger than a prescribed positive number D−1. By its very
first definition, the pseudospectrum defines regions of the complex
plane where eigenvalues of a matrix can be found because of a small
perturbation,M + DM, with ∥DM∥ < D. These perturbations lead to
small variations of the spectrum in the case of normalmatrices, but they
can becomemuchmore important in the case of non-normal matrices.
In particular, even small perturbations canmake a linearly stable system
unstable.Note that this effectmayhave important practical consequences
for networks, as the precise value of edge weights is often unknown (21),
and empiricalmeasurements of networks are prone tomissing edges (22).

As we have discussed, non-normality may strongly affect linear and
nonlinear dynamical systems on networks and, more generally, their
behavior. The contributions of this work are manifold. First, we show
Asllani et al., Sci. Adv. 2018;4 : eaau9403 12 December 2018
that a strong non-normality is widespread in complex networks empir-
ically observed in a variety of domains. As a second step, we reveal the
organization behind non-normality and show that non-normality is as-
sociatedwith a combinationof absence of cycles (23), low reciprocity (24),
and hierarchical organization (25). We also propose a simple model for
growing networks based on preferential attachment reproducing our ob-
servations. Last, we consider in detail a Lotka-Volterramodel applied to a
real-world network and show that the use of network metrics for non-
normality helps to understand the dynamics of the system.
RESULTS
Non-normal networks: Empirical data and the shape of
non-normality
As a first step, we have considered a large set of directed, real-world
networks from different disciplines, including biology, sociology,
Table 1. Summary of non-normal dynamics. In the left panel, we summarize some of the main concepts related to non-normal dynamics. They are illustrated
through the time evolution of the norm of the solution of the nonlinear bistable system

:
xi ¼ f ðxiÞ þ DðLxÞi where f(x) = x(a − x)(x − 1) [(B) on the right] and its

linearization,
:
x ¼ Mx, around the stable equilibrium x = 0 [(A) on the right]. Here, M = aI + DL, a = − 0.245, D = 10, I is the identity matrix, and L is the Laplacian

matrix of the underlying non-normal network (3). Observe that the system is asymptotically stable, a(M) = a < 0. On both panels on the right, the red curves
correspond to a non-normal scale-free (nSF) network, while the blue ones correspond to the symmetric version of the same network. Both systems are asymptotically
stable and their solutions decrease to asymptotically reach the stable point (A) x = 0. However, one can appreciate the nonmonotone convergence of the red curve
due to an initial growth induced by a positive w(M) and estimated by the Kreiss constant. This different behavior has a notable consequence in the nonlinear model
(B). In that case, even if the equilibrium point remains stable, the initial amplification due to non-normality is sufficiently strong to push the orbit toward another
equilibrium identified by an asymptotic positive amplitude ||x(t)|| > 0 for t → ∞.
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communication, transport, andmanymore. Results reported in Table 2
(see also the more complete table presented in the Supplementary
Materials) show values of standard measures of non-normality, includ-
ing the numerical abscissa, the D–pseudospectral abscissa, and the nor-
malized Henrici’s departure from normality, d̂FðMÞ ¼ dFðMÞ=jjMjjF,
all revealing that the networks present a strong non-normality.

As a next step, we investigate the type of network organization
associated with non-normality. The directedness and low reciprocity of
a network are necessary conditions for non-normality, but they are by
no means sufficient. For instance, a k-regular directed ring, whose ad-
jacencymatrix is circulant, is normal because of its rotational symmetry
(18). The conditionAAT≠ATA is instead satisfied when the network is
Asllani et al., Sci. Adv. 2018;4 : eaau9403 12 December 2018
hierarchical, that is, when nodes have a rank and edges with a strong
weight tend to flow from nodes with a small rank to nodes with a high
rank (or vice versa). These organizations are known to be prevalent in
different types of networks (25–28), for instance, through the concepts
of dominance hierarchies in social ecology, trophic levels in food webs,
and social status in social networks. The inequality becomes maximum
when the network is a directed acyclic graph (DAG), such that the
matrix takes an upper triangular form after proper relabeling of the
nodes. Again, DAGs find several applications, for instance, in the case
of citation or causal networks. On the basis of these intuitions, we
estimate the level of hierarchy of a real-world network as follows. Given
an adjacencymatrix, we search for the best nodes ordering such that the
D
ow

nloaded fr
Table 2. Some figures for a selected set of real webs. We report values of metrics associated with non-normality for a selection of well-studied real-world
networks, whose numbers of nodes and links span several orders of magnitude. A more complete table is available in the Supplementary Materials. All networks
are weighted and directed and appear to have a pronounced non-normality. Their adjacency matrix A satisfies AAT ≠ ATA, and they have a positive numerical
abscissa (w)—i.e., they are reactive—which is much larger than the corresponding spectral abscissa (a); almost all the values in the column w − a are strongly
positive. Moreover, the D–pseudospectral abscissa, aD (see Table 1), is positive for the value D = 10−1/2. The normalized Henrici’s departure from normality, d̂F (see
Table 1 and Methods), is also often very large. We observe that, in the case of very large networks, denoted with an asterisk (*), we have only been able to
provide an upper bound for this index, by computing the 1000 largest eigenvalues. We also report the structural measure of asymmetry D, which is correlated
with d̂F (see text and Fig. 1B). Additional details are provided in figs. S4 and S5.
om
 
Network name
 Nodes
 Links
 w
 w − a
 aD
 D
 d̂F
 http:
Foodwebs
//
adv
Cypress wetlands South Florida (wet)
 128
 2016
 296.71
 132.11
 167.46
 0.83
 1.00
a
nce
Cypress wetlands South Florida (dry)
 128
 2137
 217.60
 152.50
 82.20
 0.89
 1.00
s
.sc
Little Rock Lake (Wisconsin, USA)
 183
 2494
 21.69
 14.69
 10.02
 0.95
 0.93
ie
nc
Biological
e
m
a
Transcriptional regulation network (Escherichia coli)
 423
 578
 5.11
 4.11
 2.52
 0.81
 0.93
g
.org
Metabolic network (Caenorhabditis elegans)
 453
 4596
 13.44
 12.44
 6.89
 0.98
 1.00
/
 on 
Pairwise proteins interaction (Homo sapiens)
 2239
 6452
 15.79
 13.02
 4.01
 0.99
 0.99
F

ebr
Transport
u
ary
U.S. airport 2010
 1574
 28,236
 1.19 × 107
 79.30
 1.19 × 107
 0.01
 1.00
 
23, 
Road transportation network (Rome)
 3353
 8870
 2.40 × 104
 120.05
 2.39 × 104
 0.08
 0.28
2
019
Road transportation network (Chicago)
 12,982
 39,018
 4.23
 4.29 × 10−4
 4.54
 0.04
 0.19
Communication
Email network Democratic National Committee
 2029
 39,264
 28.00
 2.00
 26.37
 0.53
 0.89
Enron email network (1999–2003)
 87,273
 1,148,072
 85.14
 14.54
 71.05
 0.30
 0.99*
Email network European institution
 265,214
 420,045
 76.02
 6.09
 70.30
 0.30
 0.84*
Citation
Citations to Milgram’s 1967 paper (2002)
 395
 1988
 10.48
 10.48
 4.49
 1.00
 1.00
Articles from Scientometrics (1978–2000)
 3084
 10,416
 10.32
 8.32
 5.28
 0.98
 1.00
Citation network Digital Bibliography and Library Project
 12,591
 49,743
 21.50
 16.82
 8.45
 0.87
 1.00
Social
Hypernetwork of 2004 U.S. election blogs
 1224
 19,025
 45.37
 10.95
 34.95
 0.72
 0.98
Reply network of the news website Digg
 30,398
 87,627
 15.92
 6.56
 10.18
 0.61
 0.97
Trust network from the website Epinions
 75,879
 508,837
 123.00
 16.47
 106.96
 0.13
 0.80*
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total weight in the upper triangular part of the matrix is maximal (see
Methods), thus allowing one to identify the DAG of maximum weight
embedded in the network. A simple measure of asymmetry is then
the unbalance D between the number of entries in the upper and
lower triangular part of the relabeled adjacency matrix Ã, that is,
D := |K< − K>|/K, where K< = ∑i <jÃij, K

> = ∑i >jÃij, and K = K< + K>.
D thusmeasures the asymmetry of the adjacencymatrix after relabeling,
and it provides a structural indicator of non-normality that can be
compared with standard spectral measures, such as the normalized
Henrici’s departure from normality. In Fig. 1B, we show that the nor-
malized Henrici’s index strongly correlates with D across a variety of
real-world networks, hence reinforcing the connection between struc-
tural hierarchy and dynamical non-normality (see also Methods). Last,
note that non-normality and a hierarchical structure are global proper-
ties of a network. As an illustration, we have considered in the Sup-
plementary Materials the case of networks built from different
combinations of the same constituting blocks or motifs (25, 29–31),
and we observe that different levels of non-normality can emerge from
the combination of two directedmotifs, from strong non-normality and
a DAG structure for the whole graph to weakly non-normal patterns,
where the presence of a cycle prevents the dynamical flow to accumulate
on a small number of nodes.

Mechanistic model
Here, we propose a simple mechanistic model, denoted by the nSF
network, leading to the formation of networks with tunable levels of
non-normality. The model builds on the seminal ideas of de Solla Price
(32), later leading to the family of preferential attachment models (33).
As discussed before, critical ingredients of the model should be the low
reciprocity of the directed edges and the presence of a hierarchical struc-
ture. We thus consider a growing network where, at each step, a new
node j draws a directed edge to a previously existing node i, with a prob-
ability proportional to its in-degree. Note that this type of process is
expected to lead to the formation of power-law in-degree distributions,
but this is not our concern here. Node i also has the possibility of recip-
rocating and creating a link directed at j, as in (34). Asymmetry can be
included in different ways, either by endowing edges with a weight and
imposing that 0 ≤ wji ≪ wij or by considering unweighted edges and
assuming that the reciprocal edge is createdwith a probability pi→ j≪
1, see Fig. 2. Hierarchy is then induced by the ordering of the nodes in
terms of their arrival time. As expected, the stronger the inequalities,
Asllani et al., Sci. Adv. 2018;4 : eaau9403 12 December 2018
the stronger the non-normality of the resulting networks. We have
investigated the non-normality of the resulting networks and found a
notable similarity with the relation between D and Henrici’s departure
from normality observed in real-world networks, as shown in Fig. 1.
Note that we have also considered variants of other classical network
models, such as Erdös-Rényi (ER) (35) and Watts-Strogatz (WS) (36)
(see the SupplementaryMaterials), but their lack of hierarchical structure
prevents the formation of strong non-normality, as can be seen in their
pseudospectral properties (see Fig. 3 and the Supplementary Materials).

Application to the stability of complex ecosystems
The hierarchical structure of non-normal networks allows for the intro-
duction of interesting connections with dynamical systems. Here, we
focus on stability, a central concept to understand the emergence of col-
lective phenomena (10). The importance of network structure for sta-
bility is well established since the seminal works ofMay (7) andAllesina
and Tang (8) in the context of ecology. For instance, choosing the in-
teraction strengths from a normal distribution Nð0; sÞ, May proved
that an ecosystem loses its stability above a critical size, as a consequence
of the circular law (37). To understand the interplay of non-normality
and dynamics, we analyze the master stability function (3, 10), which is
a general tool that allows one to infer about the (in)stability of a net-
worked dynamical system; it often relies on the use of the spectrum
of some suitable linearization, while hereby conditions for (in)stability
are determined through the pseudospectrum of the linearized system
(1). The latter represents the generalized Lotka-Volterra (GLV) model,
which is popular for understanding competition andmutualism among
interacting species (7–9). The set of equations governing the dynamics
of trophic interactions is given by (9)

dxi
dt

¼ xi ri � sixi þ∑
j≠i
Mijxj

� �
; ∀i ¼ 1; 2;…N ð1Þ
Fig. 1. Structure of non-normal networks. (A) DAG (blue links) embedded in a
weighted non-normal network, with red links corresponding to entries in the lower
triangular part of the adjacency matrix (once nodes are reordered). The thickness of
a link is proportional to its weight. (B) Normalized Henrici’s departure from normality
versus the structural measure of asymmetry D, for the networks of table S1 and for the
nSF model.
A

B1 B2 B3

Fig. 2. nSF network. (A) Local breaking of reciprocity: If j’s influence over i is
larger than the reciprocal one, the pairwise relation is nonreciprocal and presents
a broken symmetry. (B) Generating model of nSF network: Once a new node
enters the system (dashed green arrow in B1), it establishes, with higher probability,
a link pointing toward the node with larger in-degree, i (solid green link in B2). With a
lower probability, the latter, i.e., the hub, can create a weaker link pointing to the
reciprocal direction (thin magenta link in B3).
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Here, ri are the intrinsic rates of (i) birth if ri > 0, meaning that
species i can reproduce itself in absence of other species and in
abundance of resources; (ii) death if ri < 0 in the sense that the
population of species i will decline in absence of other species
(e.g., preys). The positive constants si represent the finite carrying
capacity of the ecosystem (limited resources) and prevent the spe-
cies i from growing indefinitely. An important role is played by
the community matrixM, whose entriesMij (respectivelyMji) rep-
resent the influence of species j on i (respectively i on j). We also
assume thatMii = 0 , ∀ i; namely, the community matrix describes
only interspecies interactions, and intraspecies interactions have
been cast into si. In the following, we adopt the method of Chen
and Cohen (38), as already explained in the literature (8, 9). More
precisely, we hypothesize the existence of a positive equilibrium so-
lution x* that, without loss of generality, can be assumed to be of the
form x*i ¼ 1, for all i, after a suitable choice of the growth/death
rates ri. At this point, the master stability function of the GLV
model depends solely on the spectrum (pseudospectrum) of the
matrix M − diag(s), namely, the community matrix from which
we remove the matrix whose diagonal contains the interspecies
strengths si. The problem is hence mapped to a framework where
stability directly depends on species interactions.

The vulnerability of the system is visible in Fig. 4, where the
spectra (black dots) shift from the left to the right of the imaginary
axis once mutualism increases. Although the system remains stable
for a strong competitive setting (Fig. 4, A and B), we can observe
(colored curves) that the D–pseudospectral abscissa [see (19) and
Table 1] is positive and larger for structured systems than for random
Asllani et al., Sci. Adv. 2018;4 : eaau9403 12 December 2018
ones (8). To represent the former systems, we used the nSF networks
obtained with the generation model previously presented, the latter ex-
hibiting features very similar to the real trophic relations. This implies
that the system can easily be destabilized by (relatively) small fluctua-
tions due to demographic, thermal, or endogenous noise that are al-
ways present in the surrounding environment and are amplified
because of the non-normality (see the Supplementary Materials). This
remark can have important consequences in the understanding of the
problem of coexistence of multiple species in a harsh competitive
environment, e.g., in the case of the paradox of the plankton (39),
for which field observations are at odds with the principle of com-
petitive exclusion (8).
DISCUSSION AND CONCLUSIONS
We have shown that a large number of real-life networks are strongly
non-normal and that a characterization of their properties solely by
spectral methods may be misleading. Non-normality induces a strong
dependency on fluctuations and needs to be considered with care when
performing a linear stability analysis of nonlinear systems. Despite the
fact that the non-normality is well studied and that its importance has
been recognized in a variety of domains, a systematic analysis of its im-
portance and effect in large-scale networks was still lacking. Our first
contribution is thus not only the identification of what appears to be
a ubiquitous property of directed networks but also the introduction
of new methods in the toolbox of network science to generate non-
normal networks and capture the effect of non-normality on their dy-
namics. Potential applications have recently been explored, for instance,
A

D E F

B C

Fig. 3. Models of non-normal networks. Spectra and pseudospectra [computed using the software EigTool (44)] of non-normal models (top): (A) ER with link probability
pER = 0.1 andweights from a normal distributionNð0; 1Þ, (B) (unweighted)WSwith initial number of neighbor nodes k = 2 and rewiring probability pWS = 1, (C) nSF networkwith
probability of backward links pi → j = 0.001 for j > i and weights from a uniform distribution, U½0; 1�. The color bar on the right represents the different levels of ||E|| in log
scale, e.g., D= 10x, where x is the numerical value reported on the bar. Visual inspection reveals that the pseudospectrumof diverse networkmodels is affected differently by
D and, in particular, that its size is increasedmore substantially for the nSFmodel. In the bottompanels, we quantify how the size increase of the pseudospectrum affects the
stability of its network as follows. We consider the difference between the D-pseudoabscissa of A and that of its Hermitian part, dD = aD(A) − aD(H(A)), hence measuring how the
non-Hermitian aspect of the system affects its dominant eigenvalue. This quantity is always positive, as the pseudospectrumof a non-normalmatrix is larger than that of a normal
one (19), for any given fixed D >0. (D) ERwithweights fromanormal distributionNð0; sÞ for several values of the variance and different link probabilities, pER. (E) (Unweighted)WS
for different rewiring probabilities pWS and different initial number of neighbor nodes k. (F) nSF with varying backward link probability pi → j and different upper bound, b, of the
uniformdistribution fromwhich theweights are chosen, U½0; b�. In each case, the networks are composed of 100 nodes, and the adjacencymatrices have been diagonally shifted
with their respective spectral abscissa a(A), to set the real part of the maximum of each spectrum exactly at 0. For the bottom panels, the value of D has been set to 10−0.5.
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in pattern formation on networks (18) and in epidemic spreading in
metapopulation models (18). Overall, these findings emphasize that
non-normality is a critical component of complex systems and that
specific tools are necessary to complement standard methods based on
eigenspectra, which are prevalent in network science. More specifically,
this new perspective may shed light on how to explain the diversity of
species in ecosystems (40), the origin of cascade failures in power grids
(41), or the spread of epidemics in mobility networks (42), just to men-
tion a few possible applications.
3, 2019
METHODS
Measures of non-normality
A real matrixM is said to be non-normal if it is not diagonalizable by a
unitarymatrix; namely, its eigenvectors are not orthogonal to each other
(19). The numerical abscissa has been introduced in population dy-
namics (15) with the term of reactivity, and it is defined by w(M) =
sups(H(M)), whereH(M) = (M +MT)/2 is the Hermitian part ofM.
This is a very natural concept; however, it does not allow the computation
of themaximumamplification of the initial conditions exhibited by linear
stable non-normal systems. For this reason, one has to resort to the pseu-
dospectrum (19), sD(M), which is defined for all D > 0 as the spectrum
of the perturbed matrix M + E, for any matrix ∥E∥ ≤ D. From the
D–pseudospectral abscissa, aD(M) = supℜsD(M), we can obtain the
Kreiss constant, KðMÞ = supD>0aD(M)/D, and eventually the lower
bound on the orbit size

sup
t≥0

jjxðtÞjj≥KðMÞjjxð0Þjj ð2Þ
Asllani et al., Sci. Adv. 2018;4 : eaau9403 12 December 2018
Let us observe that the latter provides a straightforward bound on
the amplification envelope defined in (15). Moreover,KðMÞ is more
informative that reactivity, in fact a stable system, can exhibit a small
amplification even if w(M) > 0 is very large.

Henrici’s index is based on the observation that the Frobenius norm
of a normal matrix is given by jjMjj2F ¼ trðMTMÞ ¼ ∑n

i¼1jlij2, where
li are the eigenvalues of the matrix; one can thus define Henrici’s de-
parture from normality (19) for a non-normal matrix M by

dFðMÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjMjj2F � ∑

n

i¼1
jlij2

s
ð3Þ

It attains its minimum once thematrix is normal and then increases
as long as thematrix deviates fromnormality. To compare systemswith
different sizes, wedefine the normalized index d̂FðMÞ ¼ dFðMÞ=jjMjjF.

For a generic matrix with binary (respectively positive) entries,
one can define the imbalance between the number (respectively the total
sum) of entries in the upper and lower triangular part, using the language
of networks

DðMÞ :¼
∑
i<j

~Mij � ∑
j<i

~Mij

� �����
����

∑
i<j

~Mij þ ∑
j<i

~Mij

� � ð4Þ

where ~Mij are the entries of the final relabeled matrix.
A1 B1

B2A2

C1

C2

Fig. 4. GLV model:
:
xi ¼ xiðri � sixi þ ∑j≠iMijxjÞ. We consider an ecosystem composed of 25 species. For the sake of simplicity, the intraspecies interactions are all set

equal, si = 1 ∀ i, and M is the (weighted and signed) adjacency matrix of an nSF for the structured case (main panels) or a random matrix (insets) whose weights are
drawn from a normal distribution Nð0; 1=5Þ. In the structured cases, the strengths in the upper triangular part of the matrix M are 15 times larger than those in the
lower one, thus enhancing non-normality, as can be seen from the pseudospectrum levels [computed using the software EigTool (44)]. In the top panels, we show the
master stability function close to the asymptotically stable equilibrium point, based on the use of the pseudospectra. The corresponding dynamical evolution is shown
in the bottom panels, where different colors correspond to different levels of D in log scale (as in the top panels); initial conditions have been uniformly randomly
chosen. Different cases are considered depending on the signs of the interaction strengths: (A) competition (−/−), (B) prey-predator (−/+), and (C) mutualism (+/+). We
observe that, even if the system is asymptotically stable (A1 and B1), the D–pseudospectral abscissa is positive for sufficiently large D, thus inducing an unstable system
behavior if the perturbation (in the adjacency matrix and/or in the initial conditions) is strong enough (A2 and B2). Yet, the unstructured systems still converge to the
homogeneous equilibrium [see insets in (A2) and (B2)]. Overall, this effect is more pronounced in the structured systems than in the random ones, as the D levels are
much larger in the former case, for a fixed value of D.
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While it can be relatively easy to determine a DAG and compute D,
once we have a drawing of a (small enough) network, this task be-
comes hard starting from the adjacency matrix or a large network.
We observed that the simple operation of relabeling the nodes can
change the value ofD and that the latter increases the larger the number
of entries in the adjacency matrix in the upper triangular part, namely,
links i→ j, where j > i. Having inmind these observations, we designed
an algorithm aiming at maximizing D once couples of nodes are rela-
beled; i.e., rows and columns of the adjacency matrix are swapped. To
overcome the combinatorial difficulty of the problem, we resorted to a
simulated annealing method (43) to get an accurate solution in a rela-
tively short time. A pseudocode is presented in the Supplementary
Materials, and the generic convergence behavior of the maximization
process is shown in fig. S2.
http://advances.sciencem
ag

D
ow

nloaded from
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Section S1. Non-normal matrices and their pseudospectra
Section S2. Global structure of non-normal networks
Section S3. Models for generation of non-normal networks
Section S4. An intuitive meaning of the pseudospectrum
Section S5. Pseudospectra of real non-normal networks
Section S6. Extended table of real non-normal networks
Fig. S1. Time evolution of the norm of the solution of the linear ordinary differential equation
ẋ ¼ Mx.
Fig. S2. Convergence of the maximization algorithm.
Fig. S3. Henrici’s departure from normality versus D.
Fig. S4. Motifs organization and non-normality.
Fig. S5. Spectra and pseudospectra of non-normal networks.
Fig. S6. Pseudospectra for real networks I.
Fig. S7. Pseudospectra for real networks II.
Table S1. Some figures for real webs.
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