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Trophic signatures of seabirds suggest shifts in
oceanic ecosystems
Tyler O. Gagne,1 K. David Hyrenbach,2 Molly E. Hagemann,3 Kyle S. Van Houtan1,4*

Pelagic ecosystems are dynamic ocean regions whose immense natural capital is affected by climate change,
pollution, and commercial fisheries. Trophic level–based indicators derived from fishery catch data may reveal
the food web status of these systems, but the utility of these metrics has been debated because of targeting
bias in fisheries catch. We analyze a unique, fishery-independent data set of North Pacific seabird tissues to
inform ecosystem trends over 13 decades (1890s to 2010s). Trophic position declined broadly in five of eight
species sampled, indicating a long-term shift from higher–trophic level to lower–trophic level prey. No species
increased their trophic position. Given species prey preferences, Bayesian diet reconstructions suggest a shift
from fishes to squids, a result consistent with both catch reports and ecosystem models. Machine learning
models further reveal that trophic position trends have a complex set of drivers including climate, commercial
fisheries, and ecomorphology. Our results show that multiple species of fish-consuming seabirds may track the
complex changes occurring in marine ecosystems.
loa

 on N

ovem
ber 19, 2018

http://advances.sciencem
ag.org/

ded from
 

INTRODUCTION
Robust indicators of ecosystem health are critical to understand threats,
guide management of resilience, and promote sustainability inmarine
ecosystems (1, 2). Because food web dynamics capture both species and
their ecosystem interactions (3, 4), they are a common means to assess
ecosystem status. One such intuitive indicator used for commercial fish-
eries is themean trophic level (MTL). At the global scale,MTL shows or
obscures a variety of trends and signals including the overharvesting
and collapse of large predators [“fishing down food webs”; (5)] and
the proliferation of fisheries targeting low-TL species [“fishing through
food webs”; (6)]. This metric has been challenged as a true indicator of
ecosystem status, however, becauseMTL is generated from commercial
catch data that incorporate a wide array of biases (7). Developing TL
metrics from fishery-independent data, as a result, could advance the
sustainable management of marine ecosystems (8).

An increasingly popular technique, compound-specific stable iso-
tope analysis of d15N in amino acids (CSIA-AA), holds promise for
developing ecosystem indicators (9). Embedded within the tissues of
most organisms is a memory of their ecosystem experience (10). Age,
biogeography, diet, and other relationships can be described through a
variety of tissue tracers (11–14). CSIA-AA is unique in that it compares
the relative enrichment of 15N to 14N (d15N) in trophic and source
amino acids, building upon earlier bulk stable isotope methods, by
yielding a robust and unbiased estimate of an organism’s trophic posi-
tion (TP) (9, 15). Applications of this technique to date, however, have
largely addressed single species questions (16–20) or food web models
(15, 21). CSIA-AA has not been applied to a fishery-independent data
stream to assessmarine ecosystem status over time or to test the various
drivers of the observed trends.

Here, we examine whether broad shifts in food web structure are
reflected in a 125-year time series of seabird tissues from the central
North Pacific. As a taxon, seabirds may serve as good indicators of
marine ecosystem trophic state (22). Tobegin, seabirds represent a diverse
array of high-TL fish consumers capable of integrating much of an
ecosystem’s foodwebdynamics. Foundational research using bulk stable
isotopes suggested that the seabird TPmay track prey availability (19, 20).
However, the results of those studies can be questioned because of the
sensitivity of bulk isotopes to shifts at the ecosystembase, due to changing
ocean productivity andnutrient recycling (23, 24). Further development
with multispecies approaches shows promise, as seabirds exhibit a wide
array of foraging strategies, prey selection, and geographic affinities that
provide a diverse perspective to document and analyze environmental
change (25). On a practical level, seabird specimens are readily accessed
at large breeding colonies, from fishery bycatch and strandings, and,
importantly, are well represented in natural history collections.

We use CSIA-AA to determine the TP of eight seabird species
through time (1891 to 2016). First, we describe the historical trends,
interpret the differences among species, and use hierarchical models to
estimate prey shifts given established dietary preferences. Next, we use
random forest algorithms (RFs) to quantify the relative importance of
climate, commercial fisheries, and ecomorphology to long-term TP
changes. Our results provide new insights into trophic web dynamics
in pelagic ocean basins over time and highlight the potential of using
CSIA-AA–derived TPs in seabirds as a meaningful indicator of eco-
system status. These multispecies, fishery-independent indicators may
inform ecosystem-based management (26).
RESULTS
Seabird TP declines broadly
Seabird TPs declined broadly over 125 years in the central North Pacific
(Fig. 1). Solid lines are model medians with 95% credible intervals for
eight species (blue) and an all-species ensemble (red). As evidenced
by the baseline values from1890 (dashed line), five of eight species show
clear declines (Fig. 1, B, C, E, G, and H), two species oscillate (Fig. 1, D
and F), and one remains constant (Fig. 1A). TP does not increase in any
species. For brown noddy (BRNO) and white-tailed tropicbird (WTTR),
TP oscillates near 1983, proximate significant El Niño–Southern Oscilla-
tion (ENSO) (27) and regime shift (28) events. We observed a similar
oscillation during this period in the diet reconstruction model, which
may suggest that prey dynamics in the preferred foraging areas of these
species bear an ENSO signal.
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Additionally, we compare these CSIA-AA–derived values to point
estimates (circles, plotted at 1980) of TL estimates based fromdiet (Fig. 2)
(29). Although within the range of error, CSIA-AA–derived TP values
are consistently below point TL estimates. This may arise as low-TL
noncalcified or nonbony species are poorly detected in stomach content
studies (30, 31) on which TL estimates are often based. CSIA-AA of
tissues, however, is free from this bias. Such amismatchmay also occur
because the tissue assimilation of dietary nitrogen occurs over a longer-
Gagne et al., Sci. Adv. 2018;4 : eaao3946 14 February 2018
termperiod (months),whereas stomach contents reflect themost recent
(hours to days) organismal activity. However, if this were affecting our
study, then we might see diet-derived values randomly positioned and
not consistently above CSIA-AA–derived estimates.

From 1891 to 2016, the ensemble decline in TP was 0.32 (table S1),
similar to decreases in the Hawaiian petrel (Pterodroma sandwichensis)
observed at a millennial time scale (17). The ensemble decline from
1950 to 2016 (0.20) nearly doubled the rate during the first half of the
time series 1891 to 1950 (0.13). Wedge-tailed shearwater (WTSH), a
reported sentinel species (22), showed the steepest decline (0.38). De-
spite large credible intervals, Laysan albatross show a remarkably stable
TP. Figure S2 provides full model randomizations and estimates.

Diet abundance of squid doubles
Historical prey reconstructions from hierarchal Bayesian mixing models
indicate a marked increase in squids and a decline in four fish families
(Fig. 3). Although individual species patterns vary, the ensemble (Fig. 3I)
shows that squid almost doubles (22 to 42%), hatchetfish and lantern fish
Fig. 1. Seabird TP declined broadly from 1890 to the present. (A to H) Indi-
vidual seabird species TP series (blue lines) generated from CSIA-AA in feathers. (I) All
species TP unweighted mean ensemble (red line). Lines are median model output;
shaded area is the 95% credible interval. Circles plot point estimates of the TL computed
from the observed stomach contents (29) and forage species MTL (15, 50); thick black
lines are SE. Dotted horizontal line is the baseline TP value calculated in 1890. TP declines
overall from 4.1 to 3.8 during this period, with the decline from 1950 to the present
being twice the rate as before. Where most species showed declines (B to E, G, and
H; 63%), two fluctuated over time (D and F; 25%) and one remained remarkably constant
(A; 13%). CSSIA, compound specific stable isotope analysis; RTTR, red-tailed tropicbird.
Fig. 2. Seabird prey species and their commercial landings. (A) Taxa repre-
sented in seabird diets observed from stomach contents (29) for all prey comprising
>5% diet volume. This yields forage proportions, and we list MTL (parentheses) for
each group. Squids, goatfish, flying fish, and jacks are the dominant prey (volume,
65%). (B) Commercial landings reconstructed (58) fromspatially explicit catch records
for the dominant prey taxa above, available from 1950 to the present. Y axes are
square root–transformed to aid visualization.
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are due not only to commercial fishing but also to a complex interaction
of ecomorphology (Fig. 4), prey availability (Fig. 2), and climate (fig. S4)
factors.

Are seabirds fishing downmarine food webs? From 1950 to 1995,
the seabird TP declines we observed are similar to the reported changes
Gagne et al., Sci. Adv. 2018;4 : eaao3946 14 February 2018
in global catchMTL [0.2; (5)] but more pronounced than the estimated
MTL for the North Pacific alone (0.05). Subsequent catch analyses (7)
suggest that global MTL may have increased from 1980 to 2015, which
we found in only one of eight species in that period. The dominant spe-
cies pattern we documented was declining or stable TP (Fig. 1). The
Fig. 4. Ecomorphology reveals unique structure and foraging strategies.Wing tracing silhouettes (A) and various aerodynamic metrics for seabirds in this study (B and
C). Observed foraging distances in the North Pacific, plotted as (D) northern latitudinal limits and (E) absolute distances from breeding areas. LAAL have a relatively high
wing area per body mass (B) and relatively high aspect ratio per wing loading (C), enabling extended forage bouts at sea (D and E). Conversely, BRBO has a relatively
high wing loading per wing aspect (C), limiting its pelagic flights (D and E). Species color codes are retained through all panels.
Fig. 5. Random forest variable importance and partial dependence plots. (A) Ranked predictors by measure of the variable importance. Variable importance is the
measure by which the model mean square error (MSE) is reduced if the variable is randomly permuted. (B) Partial dependence plots for the top 12 predictors in order of
variable importance. The plots show the TP response relative to a predictor when all other predictors are mediated for. Yellow subpanels are ecomorphological traits,
green subpanels are reconstructed fishery predictors, and blue subpanels are climate inputs. (C) Partial dependence surface plots; all color designations hold except for
the red subpanel, which is a cross-sectional interaction. Notable (B) partial dependence plots are the high TLs observed for species with low wing loading, years of low
jacks and scads catch, periods of high squid capture, and periods of high NPGO index values. On the surface plots (C), relatively high TPs are observed for species with
low wing loading and high forage distances, periods of high SST, and lower PDO index values.
4 of 8
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species ensemble model shows a gradual rate of decline in TP over time
that doubles after 1950 (table S1) or during the rise of industrial fishing.
Although CSIA-AA has been used variously (9, 15, 16, 35) to estimate
TP, our results do not appear sensitive to different formulations of TP
from CSIA-AA data (see fig. S3). Because many of these seabird popu-
lations we analyze are rebounding fromhistorical bottlenecks (36), their
aggregate fishing power may not approach that of commercial fisheries
over this period. However, more research in this area is needed. Studies
at global (37) and basin (38) scales suggest that seabirds consume prey
biomass on par with commercial fisheries. However, suchmodels often
extrapolate fine-scale temporal observations during the breeding season,
when seabirds provision their chicks, and thus are subject to propagation
errors and large model uncertainties.

Bayesian diet reconstructions displayed a visible shift from fishes to
squids (Fig. 3). This result is sensitive to prey TL (fig. S8), andwe further
assume that prey TLs are themselves consistent over the study period.
Future modeling efforts might examine how pervasive trophic down-
grading or shifts in prey size distributions (39) might influence trends
in predator TPs. Despite these assumptions, TP determined byCSIA-AA
is considered insensitive to shifts at the base of the food web (9) and to
basin scaleN cycling dynamics (17). Our diet reconstruction aligns with
the global expansion in cephalopods (40, 41) and with the declining
catch of high-TL flying fish and goatfish (Fig. 2B).

In line with a hierarchal theory of ecological indicators (8), model
outputs show that ecomorphology and prey availability have direct
and dominant influences on TP, and that climate also factors (Fig. 5A).
Both the partial dependence (Fig. 4B) and variable interaction plots
(Fig. 5C) reveal a complex set of nonlinear relationships. The direction
of these relationships and the underlying mechanisms rely largely on
how catch data might reflect actual abundance. For goatfish, TP in-
creases with catch, and therefore, we might expect goatfish landings
(TL = 3.56) to reflect abundance. Given that Hawaii-based goatfish
catch has dropped (32), TP for goatfish consumers might correspond-
ingly also decline due to dietary replacement. Squid abundance is noto-
riously unpredictable (41). The positive model relationship between
squid catch and TP that we find may reflect provisioning for fish that
are seabird prey. Generally, the lagged climate series are higher ranked
than the raw data (Fig. 5B), which may indicate that climatic forcing of
prey abundance is not immediate. Fromecomorphology, the highest TP
occurs in species with low wing loading and high forage ranges, who
might search large regions efficiently for high-TL targets.

A few of the seabird species that we study here [sooty tern (SOTE),
BRNO, andWTSH] forage in associationwith predatory fish schools (42).
The failure of such fisheries in certain locations has seen a commensurate
response in some seabird diets (43, 44). Our predictive models for TP
across time incorporate a variety of drivers (climate, ecomorphology,
and fisheries) that can influence all eight seabird species. The catch data
comprising our model inputs (Fig. 2) essentially assess competitive ex-
clusion by commercial fisheries, and not the commensal relationship
whereby predatory fish like tunas concentrate seabird prey close to
the ocean surface. Such dynamics would be better assessed by quantify-
ing the concurrent availability of spatially explicit catch and the move-
ments of tuna-associated seabirds across time. Although insufficient
data exist at this time, a combination of active acoustic and microtag
tracking (44–46)may help better understand how the commercial catch
of tunas affects tuna-associated seabirds.

Being central-place foragers (22, 47), seabirds may maximize forag-
ing efficiency (48) yet respond opportunistically to prey availability at
sea. Therefore, we expect that the seabird TPs we observe integrate the
Gagne et al., Sci. Adv. 2018;4 : eaao3946 14 February 2018
various ecosystem factors that determine the distribution and abun-
dance of prey, ultimately reflecting and approximating ecosystem status.
Although the data andmethods presented heremay resolve some issues
posed by catch MTL, essentially replacing human predators with sea-
birds and diet studies with CSIA-AA, understanding seabird TP patterns
themselves ultimately relies on true fish abundance trends. These data,
although important, are both logistically demanding and elusive (1, 7).
The replication of our analysis in other regions, through available his-
torical specimens, may also hold insights into the status of marine eco-
systems and the future of seabird populations.
METHODS
Sample collection and isotope analyses
We obtained feathers for eight seabird species from the Hawaiian
archipelago: Laysan albatross (Phoebastria immutabilis), Bulwer’s petrel
(Bulweria bulwerii), wedge-tailed shearwater (Puffinus pacificus), white-
tailed tropicbird (Phaethon lepturus), brown booby (Sula leucogaster),
brown noddy (Anous stolidus), white tern (Gygis alba), and sooty tern
(Sterna fuscata). Specimens dated from 1891 to 2016 were sourced
frommuseum archives and necropsies of wild birds [n = 134; U.S. Fish
andWildlife Service (USFWS) permits MB052060-0 and MB180283-1].
Tominimize impacts to historical specimens, we accessed body contour
feathers along the sides and flanks. For contemporary specimens, we
sampled fully emerged flight feathers. Specimen availability determined
sample abundance (minimum, 10 feathers per species; average, 17;
maximum, 24). We homogenized specimens and sent samples to the
UC Davis Stable Isotope Facility for CSIA-AA.

CSIA-AA and diet composition (29) calculated species TP and
TL, respectively. TP represents

TP ¼ ðd15NTrp � d15NSrc � bÞ
TEF

þ 1

where d15NTrp is the average d
15N value for the six trophic AAs and

d15NSrc is the d15N value for the source AA. b (=2.42) and TEF
(=5.63) are AA-specific constants, averaged from each trophic AA
(9). We generated random TP values from CSIA-AA parameters and
generated time series by fitting a locally weighted regression (49) to ran-
domized TP estimates for each sample. We repeated the process 1000
times for each series to generate medians and credible intervals.

Prey item composition and longitudinal record
The only exhaustive survey (29) of these species diets provided prey
composition during 1978 to 1980. Samples were regurgitates collected
in theNorthwesternHawaiian Islands from1978 to 1980.We substituted
red-tailed tropicbirds (Phaethon rubricauda) for white-tailed tropic-
birds, because the latter are unavailable, and both species are solitary
foragers that target epipelagic prey. Species otherwise self-represent.
We sourced spatially reconstructed catch data for major prey taxa from
the Sea Around Us (SAU) database (2, 39). This provided data for the
seabird foraging area (10° to 44°N, 140° to 235°W) forCarangidae (jacks),
Exocoetidae (flying fish), Mullidae (goatfish), and Ommastrephidae
(flying squids). These four taxa (fig. S9) constituted 65% of the mean
diet volume for the seabirds we studied. SAU reconstructs catches
through composites of Food and Agriculture Organization of the
UnitedNations (FAO) data with best estimates of unreported catch, both
landed and discarded. Catch distribution was approximated through
5 of 8
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FAOarea presence, latitudinal range, range-limited polygon generation,
depth range, habitat preference, and equatorial submergence. In the
absence of catch-per-unit-effort data, catch data may approximate
fishing pressure and relative abundance (1).

A recent analysis (15) provided invertebrate TL. We calculated
seabird TL as a function of stomach contents using

TL ¼ ∑
n

i¼1
Pj � TLj

� �
þ 1

where Pj is the proportion of the jth food item based on the literature
dietary data and TLj is theMTL of the jth prey item family (15, 50). We
plotted TL estimates at 1980 over the fitted TP series (Fig. 1). Hierarchal
Bayesian mixing models (Supplementary Methods) generated prey
proportions over time, using prey TL to reconstruct the TP series.

Historical diet reconstruction
Weused hierarchal Bayesianmixingmodels [R packageMixSIAR; (51)]
to visualize shifts in diet proportions of prey sources across time. In this
model, the TP values in Fig. 1 are the mixture biotracer response as a
function of prey item assimilation, where the TL of six prey items was
the source biotracer input. Year was as a continuous random effect.
Uncertainty in source data TL was built in using mean and SE of the
TL from the literature and FishBase. We used a process error structure
to account for variation in seabird TLs (52). This structure permits con-
sumers to sample in different locations fromeachprey source distribution,
and subsequent variation in consumer tracer values is accounted for in
this sampling process. We fixed discrimination factors to 1 because TL
magnification from prey to predator is 1.

We generated informative Dirichlet priors with the weight of an
uninformative prior from the mean prey contribution estimates across
the eight seabird species (29). The sumof theDirichlet hyperparameters
is equivalent in weight to the number of source groups (that is, four for
four source groups; fig. S5). We ran the mixing model for three chains
over 100,000 iterations, removing 50,000 for burn-in and thinning by a
factor of 50. Gelman-Rubin diagnostics assessed convergence.

Climate record
We selected four basin-wide climate indices for model inputs (fig. S4).
These were theMEI, PDO, NPGO, andNorth Pacific SST. The extended
MEIwas the calendar yearmeans of the bimonthly index of SST and sea
surface height anomalies in the tropical Pacific from 1890 to the present
(27). The PDO series are the calendar year means of the bimonthly
index values of the first empirical orthogonal function (EOF) of SST
and sea surface height from 1890 to the present [National Oceanic and
AtmosphericAdministration(NOAA)NationalCenters forEnvironmental
Information]. TheNPGOseries are the calendar yearmeansof themonthly
index values from 1950 to the present of the second EOF of SST and sea
surface height (53). The Extended Reconstructed SST v4 (ERSST) is the
globalmonthly SSTdata set fromthe InternationalComprehensiveOcean-
Atmosphere Data Set (ICOADS) (54). We averaged a subset grid of the
region encompassing themaximumstudy species foraging range (10° to
44°N, 140° to 235°W) and calculated calendar year means to build the
series. To address ecosystem responses to climate changes, we generated
lagged climate series, where climate data froma given time period (t) are
used to model the trophic data from the following time period (t + 1).
Because the trophic signature turnover in feathers is a subannual process,
we used a 1-year lag.
Gagne et al., Sci. Adv. 2018;4 : eaao3946 14 February 2018
Random forest model predictions
WeusedRFmodels to interpret the strength and nature of relationships
between TP and prey availability, ecomorphology, and climate (55). RF
offers a modeling strategy that is robust while still amiable to interpre-
tation similarly to more familiar parametric models. However, RF is
resilient to large numbers of correlated predictors and nonlinear rela-
tionships (56). In contrast to conventional parametricmodels, algorithmic
models like RF do not require a priori assumption of the predictor-
response relationship, but rather learn the form of those relationships
(57) through data splitting. RF constructs multiple regression trees that
can identify irregular patterns, along with linear, curvilinear, or step-wise
relationships (57). Although individual regression trees may overfit data,
RFovercomes this shortcomingby “averaging” an entire “forest”of regres-
sion trees that are trained ondifferent subsets of predictors and response
values. Each tree is generated throughbootstrap samples,where one-third
of the sample is left out for validation with out-of-bag prediction. Pow-
erful trees can be extracted individually from a forest, although the resil-
iency of RF lies in interpreting the whole forest ensemblemodel output.
Tominimize overfitting concerns, we used a conservative hyperparameter
parameterization, the number of trees in ourmodel (ntree) was 2000, and
theminimum terminal node size for individual trees was set at 5. The
number of predictors available for splitting at each tree node (mtry) was
set at the algorithm convention of the number of parameters divided by
three rounded down (K/3).

We interpreted RF regressions with partial dependence plots. These
plots show predicted values of a response variable along a gradient of
an explanatory variable while, importantly, conditioning for all other
explanatory variables. In addition, because variable importance (Fig. 5A
and fig. S13) metrics are useful at interpreting predictive power of
independent variables, we used the reduction in MSE of a model when
a predictor is randomly permuted. RMSE and explained variance (R2)
evaluate overall model performance.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/2/eaao3946/DC1
Additional Methods
Additional Results
fig. S1. Mean absolute TP change.
fig. S2. TP data simulation raw output.
fig. S3. TP by measure of phenylalanine and glutamic acid only.
fig. S4. Incorporated climate indices.
fig. S5. Informative Dirichlet priors.
fig. S6. Hierarchal mixing model source distributions.
fig. S7. Mixing model output with confidence bands.
fig. S8. Faceted graphs of reconstructed SAU fishery catch time series.
fig. S9. Partial dependence plots of random forest model output with FAO data.
fig. S10. Partial dependence plots of random forest model output with SAU data.
fig. S11. Individual conditional expectation plots.
fig. S12. Partial dependence surface plots.
fig. S13. Full random forest variable importance output.
table S1. Mean absolute TP change.
table S2. Top 100 linear mixed-effects models.
table S3. Top 10 linear models by species.
table S4. Random forest model performance.
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