










Fig. 4. Functional consequences of autism-associated missense mutations. (A) Ratios of damaging events as predicted by SIFT. (B) Ratios of events hitting a function
domain defined in Pfam. (C) 1D protein domain structure and missense variants of all neurotransmitter receptors, transporters, and ion channel genes in synapse pathways (the
bold black box nodes in pathway graphs in figs. S6 and S7). (D) 1D and 3Dprotein structures andmissense variants hitting the AC, that is, ADCY5, and interactingGproteins, GNAS
(Gs) andGNAO1 (Gi/o). The pathway context is shown in the greendashedbox in fig. S7. AC controls the production of cAMP second-messenger in synapses (section S4). Error bars
represent SEM.
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(Fig. 4A) (21). In addition, moremissense variants in selected pathways
hit a functional domain in probands versus siblings (0.747 versus 0.558,
P < 0.05) (Fig. 4B), especially inWnt and synapse pathways (figs. S8 and
S9; more details in section S4).

Proband variants more frequently hit the selected pathways. Pro-
bands have higher absolute event rates than siblings in selected pathways
(0.11 versus 0.08, P = 4.2 × 10−4), especially in LGD (0.021 versus 0.008,
P = 2.7 × 10−4) andmissense (0.053 versus 0.036, P = 3.5 × 10−3) catego-
ries, but not in the silent category (0.033 versus 0.032, P = 0.45). After
being adjusted for event numbers within each category or in total, pro-
bands still have consistently higher pathway event rates than siblings for
both LGD (0.12 versus 0.07, P = 4.1 × 10−2) and missense categories
(0.08 versus 0.06, P = 2.2 × 10−2), but not for the silent category (0.06
versus 0.07, P = 0.60) (row 3 in Fig. 2).
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We propose a gene + pathway dual-hit (or two-factor) model for
ASD genetic association based on our results above (Fig. 2, column
3): the level of disrupting effect on target genes (G) and hitting the re-
levant pathways or not (P). These two factors have significant associa-
tionwithASDbothmarginally and conditionally, as described above. In
our model, variant load/burden per person (V) becomes less relevant
and is marked as hidden. The extra variants in probands (versus in sib-
lings) mostly fall into the gene-disrupting and pathway-hitting catego-
ries (Fig. 2, row 1, described above).

There is also a significant interaction between gene and pathway
factors (Fig. 2, row 1). Probands and siblings have the biggest differ-
ences in variants that are both gene-disrupting and pathway-hitting.
The differences diminish outside the pathways or disappear completely
in the silent category. This interaction is significant, as indicated by sig-
nificant overrepresentation in LGD hitting the pathways in probands
(52 occurred versus 34.6 expected events, P = 0.001, table S1).

What we propose here is essentially a Noisy-AND model in that
risk genetic variant tends to be both gene-disrupting AND pathway-
hitting. Themodel is Noisy because our knowledge of gene-disrupting
and pathway assignment is incomplete or because of the incomplete
penetrance.

We also estimate the prevalence of DN events with different gene-
and pathway-level effects (fig. S3). These statistics are similar to per-
patient variant burden statistics (Fig. 2, row 1) and consistent with our
two-factor genetic model for ASD (Fig. 2, row 1).With the DN variants
alone, this model explains at least 5% (2.8% within and 2.2% outside
selected pathways) of all ASD cases (fig. S3). Although consistent with
the LoF mutation contribution in the ASC study (11), this is likely a
substantial underestimation, because not all variants are called and
not all genes in the relevant pathways are known. In addition, when
other types of variants [copy number variants (CNVs), common var-
iants, or transmitted/inherited variants] are considered, this model can
be generic and more descriptive (section S2).

Pathways of DN events, integrated molecular mechanism
Selected by our special pathway-level testing procedure, these pathways
form a coherent yet nonredundant set of ASD disease mechanisms
(Table 1). These pathways are novel in various aspects: (i) For two
pathways (actin and T junction), this is the first time to report that they
are involved in ASD; (ii) for other pathways (lysine, GABA, Wnt,
MAPK, Circ, and Glut), there are some evidence on their potential roles
in ASD in literature (as in Table 1), but this is the first report that is
backed by statistical significance from whole-exome/whole-genome
analysis; (iii) for all selected pathways, this is the first report that plots
the pathway graphs to show the detailedmolecular mechanisms of ASD
(Fig. 3 and fig. S4).

These pathways present a catalog of genetic risk factors for ASD
(table S5, Fig. 3, and fig. S4). At the variant level, 43 LGD and 75 mis-
sense mutations (118 in total) are mapped to the selected pathways
(table S5). These mutations have not been identified previously as ASD
events. At the gene level, 92 genes fall into these pathways (table S6).
Among them, 20 have been reported previously as ASD genes based on
the SFARI Gene database (22). The other 72 genes are novel candidates
forASDgenes, among them9 genes are replicated in both SSC andASC
cohorts. Being part of the selected pathways, these mutations and genes
are likely pathogenic or disease-causing.

Note that we primarily focus on the selected pathways. A small por-
tion of the events outside these pathways (P = Others in Fig. 2) can also
be pathogenic because the pathway definitions are incomplete and some
Luo et al., Sci. Adv. 2018;4 : e1701799 11 April 2018
relevant pathways may not be significant because of the limited sample
size. Nonetheless, knownASD genes are greatly enriched in the selected
pathways compared to all selected genes (20 of 92 versus 67 of 540, P =
0.004). The enrichment of knownASD genes also serves as a systematic
validation of our findings.

We generate pathway graphs integrating disease-associated variants
and genes from multiple data sets: SSC (10), ASC (11), or SFARI Gene
database (Fig. 3 and fig. S4) (22). These pathways are likely true positives
and the primary molecular mechanisms for ASD because they are
consistently selected in these independent analyses. These analyses
agree in details, too: They frequently converge to the same genes, the
same gene groups (nodes), or the same signaling branch in a pathway.
They also complement each other. For instance, SSC andASC data pro-
vide numerous ASD-associated genes besides those collected in SFARI
Gene. Here, SFARI Gene is used mainly for a confirmatory analysis.
This database collects ASD genes reported from the literature works,
most of which are independent from the SSC and ASC studies.

The pathway list and data-integrated pathway graphs provide coher-
ent and systematic insights into theASDmechanism.We focus on three
pathways for example. These pathways are not entirely new based on
literature (more in Table 1) (13–15). However, in our analysis (Fig. 3
and fig. S4), they are visualized as novel molecular maps integrating nu-
merous new and known disease genes or events.

1) Wnt signaling pathway: the canonical branch only (Fig. 3A). All
DN events from SSC and ASC and all SFARI genes converge to the ca-
nonicalWnt pathway. However, just a few events/genes hit noncanonical
Wntpathways, and these genes aremostly sharedby the canonical branch
or other selected pathways. In addition, all aspects or steps of canonical
Wnt signaling are involved in ASD (Fig. 3A). These includeWnt and co-
receptor LRP5/6, messenger Dvl, key components of the destruction
complex (APC, GSK3, and CKIe), and other key players in b-catenin
phosphorylation/ubiquitination/degradation [TBL1 in p53-induced
Skp1/cullin/F-boxprotein (SCF)–like complex,b-TrCP inSCFE3ubiqui-
tin ligase complex, PS-1 (presenilin)], and repressors or activators (chro-
matin remodelers) in b-catenin–directed transcription [CHD8 (Duplin),
RUVBL1 (Pontin52), and CREBBP (CBP)].

2) The whole GABAergic synapse pathway is involved in ASD, par-
ticularly the following parts (Fig. 3B): (i) GABAA receptors and their
signal in the postsynaptic neurons, the negative feedback loops [Gi/o

and adenylate cyclase (AC)] in pre- and postsynaptic neurons, and
the clearance channel through GABA transporters (GATs) on the pre-
synaptic terminal or neighboring glial cells and (ii) glial cells besides the
pre- and postsynaptic neurons.

3) The whole glutamatergic synapse pathway is involved in ASD,
particularly the following parts (Fig. 3C): (i) the ionotropic glutamate
receptor [iGluRs and NMDARs (N-methyl-D-aspartate receptors)] sig-
nal, the postsynaptic density scaffold proteins (SHANKs, etc.), the con-
sequent synapse formation, and plasticity; (ii) metabotropic GluRs
(mGluRs; mGluR1, 5, 7, and 8), the coupled G proteins (Gs, Gi, and
Go), and the second-messenger systems downstream [Ca2+, cAMP,
diacyglycerol (DAG), and inositol 1,4,5-trisphosphate (IP3)]; (iii) the
inhibitory autoreceptor mechanism that suppresses excess glutamate
release in presynaptic neurons [mGluR7, Gi/o, GRK (G protein–
coupled receptor kinase), and AC]; and (iv) glial cells besides the pre-
and postsynaptic neurons, especially in the clearance and recycling of
glutamate.

Other pathways and graphs are equally informative, and many of
them are also supported by literature (Table 1). For details, see section
S3 and fig. S4.
7 of 14
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Subpathway biology, coherent fine details
We analyze the functional consequences of DN variants in selected
pathways. Here, we focus onmissense, but not LGD, variants.Whereas
the latter are highly destructive on overall protein structure and
function nomatter which part they hit (position-insensitive), the form-
er are subtle and precisely tell what functions are perturbed in ASD
(position-sensitive).

In probands,missense variants hit the relevant functions or domains
in selected pathways. InWnt signaling pathway,missense hit the histone
acetylation domainKAT11 twice in theCREBBP (CBP) gene andTIP49
domain in RUVBL1, the scaffolding domain WD40 in TBL1XR1, and
the CTNNB1-binding domain in TCF7L1 (fig. S8). In synapse path-
ways, the most essential players, including neurotransmitter receptors,
transporters, and ion channels on cell membrane, are heavily targeted
(Fig. 4, C and D, and figs. S6 and S7). Missense variants hit the neuro-
transmitter glutamate-binding domain in theGRIN2B (NMDAR) gene,
the seven-transmembrane region of GRM7 (mGluR7), the ion channel
domains in GABRA1 and CACNA1C, the sodium/neurotransmitter
symporter domains in SLC6A1 (GAT) and SLC6A13 (GAT2/3).

Conversely, missense variants in siblings often hit the nonfunctional
regionsor the less relevant regionsor genes (figs. S8 toS10).This proband-
sibling difference is significant overall (Fig. 4B) and extremely so in the
example pathways (fig. S8 and S9 and section S4).

Autistic missense events on the same genes tend to hit residues ex-
tremely close to each other and in the same domain. This occurs to all
cases that we observed in Wnt and synapse pathways (Fig. 4, C and D,
or figs. S8 and S9: ADCY5, CREBBP, SLC6A1, and SLC6A13). These
data strongly suggest that missense events do not occur in random, but
precisely and repeatedly target specific risky loci for ASD (P = 0.002 to
0.03, section S4).

We identified subpathway clusters of missense events in probands.
Each event cluster hits multiple interacting genes along the pathway.
They reveal recurrent molecular modules in ASD biology.

One cluster hit the cAMP second-messenger system (23) in the glu-
tamatergic synapse pathway (Fig. 4D and fig. S7). Two types of G pro-
teins bind and control adenylate cyclase (AC): Gs activates it, whereas
Gi/o (Gi/Go) inhibits it (green dashed box in fig. S7). As shown in Fig.
4D, the Ga domains of GNAS (Gs) and GNAO1 (Gi/o) are similar and
align seamlessly in 3D (24). They compete to bind to the AC C2A do-
main in a similar way. Missense variants in these two genes both hit
the Ga domain, which affects their binding to AC and hence affects
AC’s catalytic activity on cAMP production and downstream signal.
In parallel, the two missense events on AC (ADCY5) hit its C1A do-
main, which perturb AC’s catalytic function, too (Fig. 4D). In the direct
upstream (fig. S7), GRM5 (mGluR5) was hit by a destructive in-frame
deletion (K679) (table S5). GRM7 (mGluR7) was hit by a missense at the
seven-transmembrane region (Fig. 4C), which produces an unbounded
cytosol form of the protein and likely a strong antagonist of the original
transmembrane signal.

In another cluster, GRKs inhibit mGluR signaling by sequestering
heterotrimeric G proteins. See section S4 and fig. S11 for details.

All these subpathway-level biological stories we present above reveal
coherent fine details on ASD mechanism. These details are consistent
with, but complement to, the integrated pathway graphs (Fig. 3 and figs.
S6 and S7).

Superpathway biology, emergent big picture
The selected pathways are distinct yet highly interconnected. For exam-
ple, MAPKs feed into canonical Wnt pathway and inhibit T cell factor
Luo et al., Sci. Adv. 2018;4 : e1701799 11 April 2018
(TCF)/lymphoid enhancer factor (LEF)–dependent transcription (Fig.
3A and fig. S4C). In addition, they also share numerous other connec-
tions. For example, Wnt and MAPK are both involved in adherens
junctions and focal adhesion (fig. S4, G and H). These commonly
connected pathways are also perturbed inASD except that they are only
marginally significant (P = 0.01 to 0.10, table S2).

Twodistinct biological themes ormodules emerge from the network
of selected and connected pathways (Fig. 5). Module I includes Wnt
signaling, cell adhesion, junction, and cytoskeleton-related pathways.
They are involved in synapse morphology, that is, synapse assembly
and stability. Module II includes glutamatergic synapse, GABAergic
synapse, and related processes. They are involved in synapse functions,
that is, chemical and electrical signal transmissions, regulations, and
patterns. Module I concerns neuronal wiring or the “hardware,”
whereas module II concerns synaptic transmission or the “software.”
These modules are distinct in network topology, too. Connections are
dense within each module but none between them. The MAPK
pathway is the only bridge node and is highly connected in both mod-
ules. There is one less prominent theme: transcription (not shown in
Fig. 5). BothWnt andMAPKpathways end at target gene transcription,
which involves chromatin modification, especially the histone lysine
methylation branch of lysine degradation (Table 1). We also did a
parallel GO term analysis, which converges to the same set of
biological themes (section S5 and fig. S12).
DISCUSSION
We analyzed thousands of ASD exomemutations acrossmultiple levels
using a novel sequential prioritization procedure. Our results suggest
that isolated, rare mutation events are actually connected and recurrent
at higher (gene and pathway) levels (Fig. 1). In addition, the otherwise
random and divergent results from independent data sets become re-
producible. This cross-validation not only confirms the prioritization
results but also justifies the multilevel prioritization procedure. As dis-
cussed in the literature, valid method and reproducible results are crit-
ical for genome-scale studies (25) and autism genetics (26). This same
multiple-level analysis procedure is applicable to other complex diseases
or problems as well.

We also did amultilevel association analysis and proposed a gene +
pathwaydual-hitmodel forASDrisk (Fig. 2). Thedisease variants need to
both (i) disrupt the target genes and (ii) hit the relevant pathways, show
reduced or no correlation with ASD risk. Variants missing either factor,
including silent variants in the selected pathways or variants outside the
pathways, show reduced or no correlation with ASD risk. Previous
studies have established the disease association of DNmutation burden
with autism (4, 10, 27). In this newmodel, the contributionof variant load/
burden can be explained away by the gene + pathway factors and hence
becomes less relevant. Thismodel likely applies to other types of genetic
variants including CNV and single-nucleotide polymorphisms (SNP).

We reconstructed a set of coherent molecular mechanisms for ASD
(Figs. 3 to 5 and Table 1).We identified several canonical pathways that
may cause the disease, as supported by multiple independent data sets.
These disease pathways present a catalog of ASD genetic associations
(table S5) and also connect hundreds of interacting genes and variants
into a whole multiscale system (Figs. 3 to 5). All mutated pathways or
functions converge to synapse biology. Synaptic function, morphology,
or plasticity (as indicated by transcription) (28, 29) is disrupted in these
cases. These results are consistentwith previous research on synapticmor-
phology (30), function, and transcription (11, 13–15). Therefore, ASD is
8 of 14
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not only amultigenic but also amultipathway disease, and it is ultimate-
ly a synapse disease.

Our results are consistent with previous studies (1–12). For exam-
ple, synapse function and chromatin remodeling–related genes have
been repeatedly reported as possible factors in ASD (10, 11, 31), and
cell projection/morphogenesis and cytoskeleton/actin-related genes
have also been suggested (30–32). In addition to these results, our
analyses also present some novel and coherent insights into ASD biology
(Figs. 3 to 5), which aremore interpretable and informative than the gene
networks or Gene Ontology (GO) groups described in the literature.
Althoughmost identified pathways are potentially causal, theymay also
explain associated symptoms of ASD, including intellectual disability
(glutamate and GABA synapses) (33), sleeping (circadian entrainment)
(34), and digestive (protein digestion and absorption) problems (35).

These results were systematically reproduced or validated in
independent cohorts/analyses (Figs. 1 and 3, figs. S1 and S4, and Table 1).
With the specific contexts (Fig. 3 and figs. S4 to S7) and multilevel de-
tails (Fig. 4 and figs. S8 to S11), these findings are experimentally testable
if needed. Although our analysis has taken a systematic approach, our
results are far from complete. For example, temporal and spatial infor-
mation could eventually be incorporated into the gene- and pathway-
level analyses to further refine thediseasemechanism (9,36).New insights
can be expected with bigger sample size, more data, and better method-
ology coming in the near future.
Luo et al., Sci. Adv. 2018;4 : e1701799 11 April 2018
MATERIALS AND METHODS
Data collection and integration
The Exome-Seq DN variants from the SSC cohort (10) and ASC co-
hort (11) were used for this study. Please see the original publications
for details of the experimental design, quality control, and raw data
processing. The final SSC data include 2517 families, with 2508
affected children, 1911 unaffected siblings, and the parents of each
family. The ASC data we used consist of two cohorts: one includes
1445 trios and the other includes 1601 cases and 5397 ancestry-
matched controls. The ASC paper originally included 825 trios from
the SSC cohort. This overlap was intentionally excluded to create
two completely independent data sets for downstream analysis and
comparison.

Multilevel genetic prioritization
To search for the genetic causes of disease (ASD), we devised a novel
sequential prioritization procedure. The whole procedure is similar to
a multistage refinement process. We started with a few thousand rare
variants, of which only a small portion are disease-causingmutations
(drivers) and most are irrelevant (passengers). Driver events were
then selected against passengers through a sequential set of criteria
(filters), and in the end, a minor fraction (a few selected pathways) re-
mains greatly enriched in drivers. The procedure thus has three consec-
utive steps, that is, variant-, gene-, and pathway-level selection; each
Fig. 5. The superpathway clusters emerged from the pathway-level analysis of SSC exome variant data. Seven selected pathways are highly interconnected and
frequently connected to five additional pathways. All these pathways form a superpathway-level network. Two clusters or modules emergedwith distinct topology and function.
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incorporates experimental data, metadata, and annotation data at
corresponding levels. Details of individual selection steps are as follows.
Variant-level selection
Variants were divided into three major categories based on their effects
on the target genes. The silent group includes all synonymous variants
and variants which fall in the 3′ untranslated region (3′UTR), 5′UTR,
intergenic, intron, and noncoding regions. Themissense group includes
missense variants; the LGD or LoF group includes exon indels (both
frameshift and no frameshift), nonsense, and splice-site variants. Var-
iants are selected for gene- and pathway-level analyses based on a few
criteria: (i) LGD (or LoF) andmissense only, because silent variants are
usually not damaging andhave little disease association as a group (Fig. 2).
(ii) For the SSC study (10), we only considered validated variants, which
included those experimentally verified or cross-validated or called in
at least two of the three laboratories (Cold Spring Harbor Laboratory,
Yale, or University ofWashington). (iii) For ASC study (11), we only
considered DN variants in the trio families or case-only variants from
the case-control cohorts.
Gene-level selection
All selected variants were mapped to genes based on the chromosome
coordinates. We selected genes using the following scoring function,
which essentially sums up the weighted evidence for each gene.

si ¼ ∑jIij⋅wj

Gi : si ≥ s0

where i is the gene index, j is the patient index, I is the indicator on
whether a selected variant occurs to the gene-patient pair, w is the
weight, and s is the score

Corresponding to their different study designs and data quality, we
used different parameters for the two cohorts. In SSC, we takewj = 1/nj
(number of selected variants occurred to patient j) and s0 = 0.5, whereas
in ASC, wj = 1 and s0 = 2. Both criteria control the amount of evidence
from mapped variants. The former is more inclusive and the latter is
more restrictive because SSC has simpler data structure and better data
quality compared to ASC.

Note that for rare DN mutations, we did not consider linkage dis-
equilibrium. Unlike SNPs, which are transmitted in blocks, rare DN
mutations are random and independent events. Therefore, linkage dis-
equilibrium does not apply to these events. Gene length itself is an im-
portant factor contributing to ASD risk (37, 38); hence, we decided not
to explicitly control it. On the other hand, most genes were called sig-
nificant in gene length–based test because these DN events are rare. All
possible genomic features are shared by probands and siblings; hence,
the best control to use is the sibling group as we have done (Fig. 1 and
fig. S1).
Pathway-level selection
We identified pathways enriched in the selected genes. Different from
the regular gene set analysis, we test for both marginal and conditional
overrepresentation given the previously selected pathways. This
procedure ensures that pathways selected are drivers instead of passen-
gers, which share genes with the former.

The analysis is an application of the set theory. Below is a list of basic
and relevant notations following the standard set theory:

{}: set definition or description
A ∩ B: intersection between set A and B
A ∪ B: union between set A and B
A\B: relative complement, subset that belongs to A but not to B
Luo et al., Sci. Adv. 2018;4 : e1701799 11 April 2018
|A|: cardinality, or the number of elements of set A
The list of sets and variables defined for our analyses:
G = {selected genes above}
Pi = {pathway or gene set under testing}
Ps = {selected pathways or gene sets}
P0 = {all pathways or gene sets}
U = | G ∩ P0 |
V = | G ∩ P0\Ps |
X = | G ∩ Pi |
Y = | G ∩ Pi\Ps |
For marginal significance test:
X = j ~ hyperG(j; |Pi|, |P0\Pi|, U)
P(X ≥ j) = ∑l PhyperG(j; |Pi|, |P0\Pi|, U), where l= {j, j+1,..min

(|Pi|, U)}
For conditional significance test:
X = k | Ps ~ Y = k ~ hyperG(k; |Pi\Ps|, |P0\Pi,Ps|, V)
P(X ≥ k | Ps) = P(Y ≥ k) = ∑l PhyperG(k; |Pi\Ps|, |P0\Pi,Ps|, V),

where l = {k, k+1,..min(|Pi\Ps|, V)}
Here, hyperG is the hypergeometric distribution and PhyperG is the

standard probability mass function of the hypergeometric distribution.
The same analysis procedure was applied to KEGG pathways and

GO terms. The metabolic and signaling pathways from KEGG were
tested and analyzed together, and the three branches of GO, that is,
biological process, cellular component, molecular function, were ana-
lyzed separately. We did multiple-testing correction on P values using
false discovery rate (FDR; or q value).

Multilevel recurrence analysis
As shown in Fig. 1, in each level (step) of the sequential prioritization
procedure above, we have an input list (considered) and an output list
(selected) of entries (variants, genes, or pathways). We test whether the
output list (compared to the input list) was enriched in recurrent entries.
Recurrent entries were defined relative to the reference list. To analyze
the recurrence in SSC proband variants (either input or output), the
reference list can be variants from ASC probands, SSC siblings, or
SSC probands (themselves) corresponding to recurrent entries in an
independent cohort, in the control group of the same cohort, or in
the same proband group, respectively. Entries recurring between
independent cohorts measure reproducibility of studies. Entries recur-
ring in normal condition were likely irrelevant to the disease, and those
recurring in the same disease group were likely relevant to the disease.
These different types of recurrence can be used for validation of prior-
itization procedures. Enrichment of recurrent changes between differ-
ent cohorts or within the same disease group (likely disease-causing or
true positives) suggests sensitivity, whereas depletion of recurrent
changes from the control groups (likely disease-irrelevant or false posi-
tives) suggests selectivity.

As in Fig. 1 (A and B) and fig. S1 (A and B), enrichment of recurrent
entries was tested using hypergeometric test. Input lists were marked as
considered (black circle), output lists were marked as selected (red
circle), and selected lists from the contrast condition were used as a
reference list (blue circle) for recurrence (overlaps in gray or purple).
The recurrence rate difference between probands and siblings was ana-
lyzed using two-sample t tests (fig. S1C).

Multilevel association analysis
To analyze the ASD association of DN mutations, we take their gene-
and pathway-level effects into account. DN variants can be divided into
groups based on these effects. At the gene level, they were assigned to
10 of 14
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silent, LGD, missense, or nonsilent (LGD + missense) groups, as de-
scribed above. At the pathway level, they belong to either the Selected
pathways (Table 1) or Others. That is, DN variants can be divided into
1D or 2D groups based on two variables: gene-level effect (G) and
pathway assignment (P), as shown in table S1 (raw counts) and Fig. 2
and fig. S2 (event rates).

TheASD associationwas then tested for eachDNvariant group (Fig.
2 and fig. S2). The ASD association can be measured by rate difference
(over noise), rate ratio (q), or log q between probands and siblings. The
data suggested a strong interaction between the two factorsG andP (Fig.
2, row 1, and table S1). Therefore, we tested the marginal ASD associa-
tions (Fig. 2, row 1) and the conditional ASD associations by fixing
factor P or G (Fig. 2, rows 2 and 3). Marginal associated test was con-
ducted on nominal event rate [raw count per cell per number of individ-
uals (n) in table S1] for each variant group, whereas conditional test was
conducted on normalized event rate, that is, the nominal rate of individ-
ual variant group normalized by the total event rate of each P or G level
(raw count per cell/row or column sum in table S1). To test the rate
difference betweenprobands and siblings, we conducted two-proportion
z test for conditional rates and two-sample t test for marginal rates. Odd
ratio tests gave similar results as in our conditional rate tests butwere not
suitable for marginal tests on absolute variant rates.

Multilevel function analysis
We analyzed the perturbed biological processes and functions in ASD
within the hierarchical context of variant, gene, and pathways. In par-
ticular, we focused on the few selected pathways (Table 1) and the
mapped variants and genes. Details of the function analyses are covered
by levels below.
Pathway level—Data integration and visualization
We visualized all selected pathways with ASD variants/genes mapped
and integrated (Fig. 3 and figs. S4 to S7). These graphs reveal integrated
molecular mechanisms at the pathway level. Pathview package (39) was
used for pathway-based data integration and visualization. Variants
were first mapped to the target genes, which were then mapped and
visualized onto the selected KEGG pathway graphs. In the disease gene
view (Fig. 3 and fig. S4), variant-targeted genes from SSC and ASC and
SFARI genes are collected, integrated, and shown in the relevant path-
ways. Different data sources were marked by colors, gene-level scores
weremarkedbybrightness, and correspondingpathway analysisP values
are also shown. In variant type views (figs. S5 to S7), DN variants from
SSC were projected and visualized on the target pathways. Variant types
or effects (LGD,missense, or silent) weremarked by different colors, and
their corresponding event counts were also shown.
Subpathway level—Protein structure and function analysis
We analyzed the functional consequences of DN variants in selected
pathways. Here, we focused on missense variants, which are subtle and
precisely tell what functions are perturbed in ASD (position-sensitive).
The overall functional impact of these variants was assessed using SIFT
tool (similar results with PolyPhen and not shown) or based on Pfam
protein domains (as domain hitting or not). Variants from probands
or siblings were divided into groups by pathway assignment (Selected
pathways or Others). The damaging or domain hitting ratios of each
variant group were then compared using two-sample t tests assuming
binomial variances (Fig. 4, A and B).

Exome variants were mapped to amino acid changes in the target
protein using Bioconductor VariantAnnotation package (40). 1D
linear protein domain structures were visualized using cBioPortal
MutationMapper (41). Protein domain data were retrieved from the
Luo et al., Sci. Adv. 2018;4 : e1701799 11 April 2018
Pfam database (42) and updated the protein domain locations. 3D
protein structure data were retrieved from the Protein Data Bank
(PDB) (43). The mapped exome variants coded into amino acid
changes were then visualized with the 3D protein structure using
PyMOL (www.pymol.org).
Superpathway level—Networks of KEGG pathways or
GO terms
KEGG pathway and GO definition and gene annotation data were
downloaded from the corresponding database as of March 2015. We
analyzed the functional interactions between pathways. First, we built
a network of pathways (Fig. 5), where nodes are pathways and edges are
pathway interactions explicitly documented in the KEGG LinkDB
database or implicitly suggested by KEGG pathway diagrams or defini-
tions. We focused on a subnetwork where nodes are either selected
pathways or other pathways but directly connected by at least three
selected pathways. Network on selected GO terms was done similarly
(fig. S12). However, we used a bipartite graph. This graph includes GO
terms as one node type and biology themes as the other. Edges were
directed from GO terms to biology themes only, as suggested by GO
term definition or at least one literature work in table S3.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/4/e1701799/DC1
section S1. Sequential convergence from variant to gene to pathway level
section S2. Autism genetic association dissected across multiple levels
section S3. Pathways of DN events, integrated molecular mechanism
section S4. Subpathway biology, coherent fine details
section S5. Superpathway biology, emergent big picture
fig. S1. Multilevel recurrence of de novo mutations in SSC study.
fig. S2. Autism genetic association analysis across variant, gene, and pathway levels with the
SSC exome DN mutation data.
fig. S3. Prevalence of DN variant types by gene- and pathway-level effects in the SSC exome
study.
fig. S4. An integrated view of autism associated DN variants or genes from multiple sources.
fig. S5. An integrated view of DN variants by gene level effects in the selected KEGG pathway,
hsa04310 Wnt signaling pathway.
fig. S6. An integrated view of DN variants by gene level effects in the selected KEGG pathways,
hsa04727 GABAergic synapse.
fig. S7. An integrated view of DN variants by gene level effects in the selected KEGG pathways,
hsa04724 Glutamatergic synapse.
fig. S8. 1D protein domain structure and missense variants of genes in Wnt signaling pathway
for both probands and siblings.
fig. S9. 1D protein domain structure and missense variants of genes in synapse pathways for
both probands and siblings.
fig. S10. 1D protein domain structure and DN mutations of gene pairs in Wnt signaling and
synapse pathways.
fig. S11. 1D and 3D protein structures and missense variants hitting mGluR inhibitor GRK
(ADRBK2) and interacting G proteins.
fig. S12. Selected GO terms and emerging biological themes from the SSC exome variant data.
table S1. The actual (and expected) counts of DN events by gene-level (columns) and
pathway-level (rows) effects.
table S2. Other pathways connected by three or more selected pathways in Table 1.
table S3. Significant GO groups selected from SSC, their test statistics, and references.
table S4. (selectVariant.xlsx file). Validated and selected variants in the multilevel integrated
analyses of SSC and ASC data.
table S5. (variantAnnot.xlsx file). Validated variants and functional annotations in the selected
pathways of SSC data.
table S6. (geneAnnot.xlsx file). Genes hit by LGD or missense events in probands in selected
pathways.
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