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Flexible active-matrix organic light-emitting diode
display enabled by MoS2 thin-film transistor
Minwoo Choi,1* Yong Ju Park,1* Bhupendra K. Sharma,1 Sa-Rang Bae,2

Soo Young Kim,2† Jong-Hyun Ahn1†

Atomically thinmolybdenum disulfide (MoS2) has been extensively investigated in semiconductor electronics but
has not been applied in a backplane circuitry of organic light-emitting diode (OLED) display. Its applicability as an
active drive element is hampered by the large contact resistance at the metal/MoS2 interface, which hinders the
transport of carriers at the dielectric surface, which in turn considerably deteriorates the mobility. Modified
switching device architecture is proposed for efficiently exploiting the high-k dielectric Al2O3 layer, which, when
integrated in an active matrix, can drive the ultrathin OLED display even in dynamic folding states. The proposed
architecture exhibits 28 times increase in mobility compared to a normal back-gated thin-film transistor, and its
potential as a wearable display attached to a human wrist is demonstrated.
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INTRODUCTION
Recently, to realize intelligent electronic systems, there is an increasing
demand to combine functional features such as ultrathin characteristics
(1, 2), large area (3), wrapping onto irregular surfaces (4, 5), easy attach-
ment to the human body (6, 7), and several other characteristics (8, 9)
with the current electronic circuitry. Compared to other typically inves-
tigated organic (10, 11) and inorganic materials (12), van der Waals
materials with atomic thickness demonstrate the immense potential
for these systems (13). Transition metal dichalcogenides such as
MoS2 and WSe2 with a two-dimensional (2D) atomic layer have been
reported to be superior to conventional materials owing to their excep-
tional electrical andmechanical properties (14–16). On the basis of their
outstanding properties, these materials can be exploited for large-area
flexible switching-based applications. In particular, the active-matrix
backplane for flexible organic light-emitting diode (OLED) displays is
one of the most promising applications of these 2D semiconductors be-
cause they offer important benefits such as high carrier mobility, high
optical transmittance, and low flexural rigidity required for switching
OLEDs on a flexible substrate compared to conventional inorganic
semiconductors. Although a few studies have demonstrated the
switching of a single-pixel OLED using mechanically exfoliated 2D
materials as the semiconducting channel of a thin-film transistor
(TFT) (17, 18), these capabilities have not been investigated in flexible
systems or in the active-matrix backplane circuitry for large-areaOLED
displays. Exfoliated monolayer MoS2 exhibits excellent field-effect
mobility (10 to 40 cm2 V−1 s−1), but it is not a suitable method for real
electronic applications (10). Large-area MoS2 films prepared using
chemical vapor deposition (CVD) have been considered as a more
favorable candidate for OLED displays, although they exhibit low mo-
bility that results from small grain size, inherently rendering its semi-
conducting features inferior to those of the exfoliated materials (19).
However, MoS2 as an active channel material has serious drawbacks
including the large contact barrier between the source/drain (S/D)
metal electrode andMoS2 channel and the electron transport hindered
by Coulomb scattering and trap charges at the interface between the
gate dielectric andMoS2 in the TFT configuration, in comparison with
conventional inorganic semiconductors (20). These factors significant-
ly reduce themobility ofMoS2-based TFTs to≤1 cm

2 V−1 s−1, which is
comparable to that of a-H Si (21). This low-mobility value prohibits
the integration of MoS2 TFTs into large-area active-matrix OLED
(AM-OLED) displays (22–24). Although researchers have attempted
to improve the carrier mobility of devices by integrating high-k di-
electric materials such as Al2O3 or HfO2 as a gate dielectric in a con-
ventional manner, there are still significant challenges in satisfying
the electrical specification demands of various electronic applications
(25–27).

Here, a TFTdevice is designed using theAl2O3 layer in variousways.
ThisAl2O3-cappedTFTdevice leads to reduced contact resistance at the
metal/MoS2 interface and permits the doping of the channel region,
which, in turn, reduces the scattering charge impurities and an effective
decrease in the interface-trapped charge density via a smooth surface.
All these benefits synergistically yield uniform MoS2 TFT arrays with
high mobility, which can efficiently operate OLED pixels on flexible
plastic substrates.
RESULTS
The backplane circuitry of a flexible display, comprising an array of
transistors responsible for turning the individual OLED pixels ON
and OFF, was fabricated using a metal-organic CVD (MOCVD)–
grown bilayer MoS2 film on a 6-mm-thick ultrathin polyethylene ter-
ephthalate (PET) substrate (Fig. 1A). The MoS2 TFT has a top-gate
configuration sandwiched between two high-k dielectric Al2O3 layers,
leading to the enhancement of the carrier mobility because the top di-
electric Al2O3 layer facilitates the doping of the MoS2 film at the
channel and S/D contact regions. Furthermore, the bottomAl2O3 layer
on the SiO2/Si substrate reduces the roughness and provides a smooth
substrate surface compared with that of bare SiO2 (Fig. 1B). In partic-
ular, in contrast to the conventional device structure of MoS2 TFTs, in
which the S/D electrodes are formed on top of the MoS2 film, the S/D
electrodes of the device are located below theMoS2 film, which aids the
subsequent deposition of the top dielectric Al2O3 layer and effectively
reduces the contact resistance of the S/D contact regions. The decrease
in contact resistance enhances the carrier mobility and facilitates the
OLED display operation, which requires a high amount of current (28).
In the atomic force microscopy and cross-sectional high-resolution
1 of 7

http://advances.sciencemag.org/


SC I ENCE ADVANCES | R E S EARCH ART I C L E

 on N
ovem

ber 12, 2018
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

transmission electron microscopy images, improved surface roughness
and conformal attachment of the MoS2 film to the top and bottom
Al2O3 layers were observed, indicating a clean interface without
pinholes or gaps (figs. S1 and S2). The OLED display driven by the
bilayer MoS2-based backplane TFTs was well operated even under
bent status orwhen attached to a humanwrist, indicating the possible
applications to wearable displays (Fig. 1, A and C) (28).

It is crucial to explain the mechanism by which the carrier mobility
of bilayer MoS2 TFTs increases with the use of two dielectric Al2O3

layers. The high-k Al2O3 layer facilitates considerable n-type doping
of the MoS2 layer owing to its oxygen-deficient surface. From earlier
studies, band structure calculations have indicated that the presence
of interfacial oxygen vacancies in theAl2O3 layer lowers the conduction
band edge below the Fermi level and initiates the filling of the lower
conduction band states of MoS2 at the interface, leading to the n-type
carrier injection in MoS2 (25). Moreover, the large dielectric mismatch
at the Al2O3/MoS2 interface suppresses the Coulombic impurities
effectively in the MoS2 layer (26). These benefits associated with the
presence of a high-k dielectric environment possibly enhance the
carriermobility of the resultantMoS2 TFTs (27). The additional advan-
tage of the modified TFT structure is rendered by the bottom Al2O3

layer, which provides low surface roughness and further improves
the device performance via the suppression of the interface-trapped
charge density. The n-type doping owing to the top Al2O3 layer in the
proposed structure is evident from the Raman and photoluminescence
spectra of the bilayer MoS2 film with different combinations of Al2O3

as compared to the bare SiO2/Si substrate (figs. S3 to S5 and see the
Supplementary Materials).

In addition to the damping of the Coulomb scattering and suppres-
sion of the interface trap charges, the top Al2O3 layer is used for doping
Choi et al., Sci. Adv. 2018;4 : eaas8721 20 April 2018
MoS2 in the channel and contact regions in our modified TFT struc-
ture. The increased electron concentration at the S/D contact regions
reduces the Schottky barrier width, significantly decreasing the contact
resistance Rc (fig. S6) (29). The decrease in Rc in combination with the
doped channel, damped Coulomb scattering, and low surface rough-
ness results in an increase of carrier mobility and uniform output char-
acteristics of the MoS2 TFTs on a large-area substrate.

To clarify the effect of the top and bottomAl2O3 layers toMoS2TFT,
the deviceswith each layer andboth layers are prepared usingMOCVD-
grown MoS2 film (Fig. 2A and table S1). It is evident that back-gate dc
characteristics of TFT fabricated on bare SiO2/Si wafer exhibited a sig-
nificant improvement in theONcurrent (②) afterAl2O3 layer encapsu-
lation, which confirms the doping effect owing to the top Al2O3 layer
(Fig. 2A). In case of the top gate, a slight increment in the ON current
(③) was observed, compared to the back-gate, encapsulated TFT (②),
and this increment was further improved (④) for the channel sand-
wiched between the top and bottom Al2O3 layers (Fig. 2A). Here, the
bottom Al2O3 layer in the sandwiched channel plays a crucial role in
reducing the hysteresis significantly owing to the reduction in interface
trap charge density (fig. S7 and see the Supplementary Materials).
These improved features were also evident in output characteristics
and mobility enhancement: a significant boost-up in mobility value
(~28 times), positive threshold voltage, Vth (~5 V), high ON/OFF ratio
(~108), and transconductance (1.2 × 10−7 S mm−2) as compared to
conventional back-gate structure (Fig. 2, B and C, fig. S8, and table
S1). In particular, the positive Vth of top-gated TFT can maintain the
OFF state of the pixel without the supply of an additional gate bias volt-
age, which consequently reduces the unnecessary power consumption
during the selective pixel operation (table S1). Moreover, there have
also been similar effects withMoS2 single crystal (fig. S9) (30, 31). Thus,
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Fig. 1. The device structure of flexible OLED display with MoS2-based backplane circuitry. (A) Schematic of high-mobility MoS2 TFT using an Al2O3 passivation
layer. The Al2O3 passivation layer ensures n-type doping of not only the MoS2 channel region but also the contact region (top); ultrathin AM-OLED display using the
high-performance MoS2-based backplane array (middle), which is attached as a display to human skin (bottom). (B) Specific layer structure of the ultrathin AM-OLED
display. The thickness of the total display system is less than 7 mm. (C) Optical image of the assembled display on the flexible ultrathin polymer substrate; low bending
stiffness of the display offers ultraflexibility. The inset image shows the flat state of the active-matrix display circuit.
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these characteristics of devices show enough performance capabilities to
satisfy the needs of TFT for the operation of the OLED display.

The values of Rc and channel sheet resistance (Rsh), which are the
important factors influencing the mobility, must be estimated at the
S/D/MoS2 contact region and theMoS2 channel between the S/Dmetal
electrodes, respectively. The contact properties were characterized as
the back-gate dc characteristics of TFTs with and without Al2O3 en-
capsulation. The transfer length method was performed to quantify
Rc using TFTs fabricated for the channel lengths of 4, 8, 12, and
16 mm (see the Supplementary Materials). The Rc value, which was
calculated as the intercept from the linear fitting of the RW (R, total
measured resistance; W, channel width) plot against channel lengths,
was 5.9 ± 0.7 ohm·cmand 56.7 ± 9.1 ohm·cm (atVgs = 150V;Vds = 1V)
for TFTs with and without the Al2O3 encapsulation, respectively (Fig.
2D). The Rc value decreased with the increase in the back-gate voltage
owing to the electrical doping of MoS2 with applied gate bias, which
reduced the effective barrier height (Fig. 2E) (32). Rsh remained almost
unchanged with the application of back-gate voltages (Fig. 2E); howev-
er, a small decrement was observed owing to the increased carrier con-
centration near the accumulated region for channel formation. In case
of top-gate TFTs, there were no significant changes observed in the
values of Rc and Rsh as compared to back-gate TFTs (Fig. 2E and fig.
S10). Notably, Rc and Rsh are reduced owing to the presence of the top
Al2O3-encapsulated layer, leading to significant improvement in the
mobility. The above experimental results demonstrate that the top
Al2O3 dielectric layer effectively doped MoS2 in both the channel and
overlapped contact regions. The doping in the channel region increased
the effective carrier concentration, leading to the improved ON current
and negative shift in Vth, whereas the increased concentration of elec-
trons at the contact region reduced themetal/MoS2 barrier width, there-
by considerably decreasing the values ofRc. Therefore, the improvement
in mobility can be attributed to the combined effect of doping in the
Choi et al., Sci. Adv. 2018;4 : eaas8721 20 April 2018
channel and reduced Rc of the S/D region by the top Al2O3 layer. A
wafer-scale fabrication (Fig. 2F, inset photograph) of top-gated TFTs
resulted in the excellent device yields (>95%), long-term stability (fig.
S11), and high uniformity in switching parameters; most of the TFTs
showed the high-mobility values (17 to 20 cm2 V−1 s−1), low hysteresis
(<0.75 V), highON/OFF ratio (>106), and positiveVth (5 ± 2V) (Fig. 2F
and fig. S8). Thus, highly reliable and uniform performances of top-
gated TFTs render them suitable for use as the backplane of OLED
displays.

The performance of a single-OLED pixel connected with a bilayer
MoS2 TFT before the operation of the large-area AM-OLED display
was examined (Fig. 3, A and B, and fig. S12). The current density
followed the diode characteristics; this observation is evident as OLEDs
inherently behave as diodes. The turn-on voltage at 10 cd m−2 was 4 V.
The luminance linearly increased and reached≥5000 cd m−2 at a volt-
age greater than 8V, indicating the excellent emissivity of the fabricated
OLED (33). The OLED operation was tested by the application of volt-
age to drive TFT. The representative OLED exhibited excellent emis-
sion upon the application of VGate of approximately 8 V and VData of
approximately 9 V to the gate and drain terminals of the driving TFT,
respectively (Fig. 3C). Moreover, with a unit increase inVGate (4 to 9 V)
at a constant VData of approximately 9 V, the emission intensity of the
OLED was distinguishable (Fig. 3D). At VGate of 9 V, the maximum
luminance reached 408 cdm−2; this value is sufficient for display appli-
cations, indicating that the fabricated MoS2 TFT is capable of driving
the OLED (33). Figure 3E shows the increase in the OLED current
(IOLED) against the data biasVData at different values ofVGate. The value
of IOLED in the OFF state remained stable, indicating a leakage-free
operation of the driving TFT, whereas, in the ON state, it significantly
increasedwithVGate. TheOLED requires aminimum threshold voltage
to turn ON owing to its diode-like behavior. At a low VData (<5 V), the
OLED was turned OFF; therefore, IOLED is independent of VGate. In
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Fig. 2. The device characteristics of MoS2 TFTs with different structures. (A) Transfer characteristics of bilayer MoS2 TFTs with various device structures (in all cases,
MoS2 was on top of S/D contacts); [inset shows the top-gated (TG) ③ and ④] back-gated (BG) MoS2 TFT on SiO2/Si (①), back-gated MoS2 TFT on SiO2/Si with Al2O3

encapsulation (②), top-gated MoS2 TFT on SiO2/Si (③), and top-gated MoS2 TFT on Al2O3/SiO2/Si (④). The top-gated MoS2 TFT sandwiched by two Al2O3 layers (④)
showed the high performance over other fabricated TFTs. (B) Output characteristics of all TFTs (①, ②, ③, and ④) corresponding to (A); inset shows the increment of
current density at shown bias. (C) Mobility values for all TFTs (①, ②, ③, and ④) corresponding to (A). (D) Transfer line plot for extracting line contact resistivity (Rc) and
channel sheet resistance (Rsh) under different gating conditions. (E) Extracted Rc (filled circle) and Rsh (empty circle) of back-gated bilayer MoS2 TFTs on Al2O3/SiO2

substrate before (black) and after (red) Al2O3 deposition. (F) Transfer characteristics of top-gated Al2O3/MoS2/Al2O3 sandwiched TFTs (100 devices). Insets show the
photograph of wafer-scale fabrication of TFTs and mobility histogram for 500 TFTs showing the average value of mobility (18.1 cm2 V−1 s−1).
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contrast, it turned ON at high VData (≥5 V); thus, IOLED significantly
increased withVData (fig. S13) and demonstrated an apparentVGate de-
pendency. The OLED exhibited rapid ON and OFF states against a re-
peatedVGate pulse of ±10 V (Fig. 3F). The response time was estimated
to be 2.5ms,whichwas limited by themeasurement system, butwas still
sufficiently low to drive the OLED with a short delay time (3). All the
aforementioned operations of single OLEDs driven by the MoS2 TFT
indicated that the MoS2 TFT in the developed top-gate configuration
successfully drove the OLED unit.

The prototype ultrathin flexible AM-OLED display driven by a bi-
layerMoS2-based backplanewas demonstrated. The complete assembly
(inset of Fig. 4A and fig. S14), including the active-matrix array and
deposited OLED units, was arranged on a thin PET sheet (thickness,
6 mm) with the help of polydimethylsiloxane-coated glass carrier sub-
strate (fig. S15). The representative AM-OLED exhibited a thickness of
approximately 7 mm, which is thin enough to yield a smaller value of
bending stiffness. TheMoS2-based backplane contributes significantly
to the realization of a low value of bending stiffness owing to the good
mechanical property of the atomically thin MoS2 layer. Thus, a low
Choi et al., Sci. Adv. 2018;4 : eaas8721 20 April 2018
value of bending stiffness of resulting device facilitates conformal con-
tact to human skin, and the excellent mechanical endurance of MoS2
allows the good operation of the device after the attachment (Fig. 4A).
The current ON/OFF mapping corresponding to a representative let-
ter “M” showed that all the pixels (6 × 6 array) functionedwell with the
variation of ON/OFF current (±2%) without any external compensa-
tion circuits, indicating the excellent control of the activematrix on the
OLED units (Fig. 4B). The AM-OLED display demonstrated a stable
performance during continuous operation while being attached to a
human wrist (movie S1 and snapshots in Fig. 4C). Four alphanumeric
characters—“M,” “O,” “S,” and “2”—were displayed with rapid re-
sponse to the systematic change of the program codes for each char-
acter and real-time control ofVGate andVData. The AM-OLED display
also functioned well without device failure when it was peeled from
the carrier glass substrate (movie S2 and Fig. 4D). Furthermore, the
AM-OLEDdisplay exhibited excellent endurance under repeated bend-
ing tests with a bending radius of 0.7 mm, showing small current var-
iation within 10% (fig. S16) (34). These small variations in the pixel
current were recovered in a flat condition and did not affect the display
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operation. The excellent flexibility of the AM-OLED could be realized
owing to the low bending stiffness of the entire AM-OLED assembly.
12, 2018
DISCUSSION
Wedemonstrated ultrathin flexible OLEDdisplays driven by an active-
matrix backplane circuitry composed of MoS2-based TFTs. The im-
provement of device properties of TFT was realized by combining
the n-type doping of MoS2 at the S/D and channel regions, damping
the Coulomb scattering, and reducing the trap charges and interface
scattering through the modified TFT structure with a channel sand-
wiched between two Al2O3 layers. These MoS2-based TFT arrays were
successfully integrated with OLEDs on an ultrathin polymer substrate
to demonstrate 6 × 6 active-matrix configurations. The brightness of
each pixel was steadily adjusted from 0 to 408 cd m−2 via the gate con-
trol of the MoS2-based backplane circuitry, and the uniformity of
display was confirmed by the ON/OFF current mapping with fast
switching response properties. The flexible AM-OLED display was
compatible even in a highly deformed state because it was well operated
during the peel-off from the carrier substrate. The results reported here
form the basis for the implantation of display-based applications on
humanmovable body parts forwearable health-monitoring electronics,
which advance the 2D material-based applications.
Choi et al., Sci. Adv. 2018;4 : eaas8721 20 April 2018
MATERIALS AND METHODS
Synthesis of MoS2
Bilayer MoS2 was grown using MOCVD. A 4-inch Si wafer with ther-
mally grown 300-nm-thick SiO2 was placed in a quartz tube with a di-
ameter of 4.3 inch. Before the growth of MoS2, the wafer was cleaned
with water, acetone, and finally isopropanol. Molybdenum hexa-
carbonyl (MHC; 577766, Sigma-Aldrich) and dimethyl sulfide (DMS;
471577, Sigma-Aldrich), with high equilibrium vapor pressure, were
chosen as the Mo and S precursors, respectively, and introduced into
the quartz tube using H2 and Ar as the carrier gases in the gas phase.
The optimized parameters for the growth of bilayerMoS2 included the
pressure of 7.5 torr, growth temperature of 550°C, growth time of
20 hours, MHC flow of 1.0 standard cubic centimeter per minute
(sccm), DMS flow of 0.3 sccm, Ar flow of 300 sccm, and H2 flow of
10 sccm.

Fabrication and characterization of MoS2 TFT
A 50-nm-thick bottom Al2O3 layer was deposited on a 300-nm-thick
SiO2 wafer using an atomic layer deposition (ALD) system. S/D elec-
trodes (Cr/Au, 3/30 nm)were patterned on the Al2O3/SiO2 wafer using
general photolithography (W/L, 300/4 mm). The bilayer MoS2 film was
transferred onto the wafer and patterned as a channel via reactive ion
etching using CHF3/O2 plasma. Subsequently, a 50-nm-thick top
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Fig. 4. Flexible OLED display driven by MoS2 backplane circuitry. (A) Photographic image of ultrathin AM-OLED display on the human wrist while the display is
operated; display stably attached to the skin owing to the ultrathin substrate. (B) Current mapping result during the display of the letter “M”; current of ON pixel (green
dot) and OFF pixel (black dot), demonstrating uniform and low cross-talk properties. (C) Optical images of dynamic operation on human wrist using the external circuit;
representative letters “M,” “O,” “S,” and “2” are sequentially changed on skin according to the active-matrix line addressing. (D) Optical images of the peel-off process
from carrier glass substrate. The ultrathin display is folded during peel-off, owing to the low bending stiffness of the total display system.
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Al2O3 dielectric layer was deposited on MoS2. To avoid H2O molecule
traps and the formation ofMo–Obonds during the initial growth cycles
of ALD, which significantly degrade the MoS2 TFT performances, a
possible combination of minimum H2O exposure with low tempera-
ture was optimized. In addition, to improve the Al2O3/MoS2 interface,
the devices were baked at 110°C overnight under vacuum condition
(35). Finally, the top-gate electrode (Cr/Au, 3/30 nm)was formed using
photolithography and a lift-off process. MoS2 TFT was characterized
using a SourceMeter unit (Keithley 4200 SCS parameter analyzer,
Keithley Instruments Inc.).

Fabrication of OLED
The ITO-coated substrate was used to fabricate the Green OLEDs.
Prior to it, the substrate was cleaned using acetone, isopropyl alcohol,
and deionized water, sequentially followed by drying and exposure
to ultraviolet/ozone treatment for 15 min. Subsequently, layers of
N, N′-di(1-naphthyl)-N, N′-diphenyl-(1,10-biphenyl)-4, 40-diamine
(40 nm), tris-(8-hydroxy-quinoline) aluminum (Alq3, 30 nm), 2, 3, 6,
7-tetrahydro-1, 1, 7, 7,-tetramethyl-1H,5H,11H-10-(2-benzothiazolyl)
quinolizine [9,9a,1gh] coumarin (5% doping), bathocuproine (5 nm),
and Alq3 (25 nm) were deposited as the hole transport layer, emitting
layer, hole-blocking layer, and electron transport layer under vacuum
of approximately 2 × 10–6 Torr at a deposition rate of 1 Å/s. Finally,
LiF (1 nm) and Al (100 nm) layers were thermally deposited.
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fig. S1. Atomic force microscopy images of SiO2 and Al2O3/SiO2.
fig. S2. Cross-sectional transmission electron microscopy image of Al2O3/MoS2/Al2O3
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fig. S15. Schematic illustration of steps for ultrathin AM-OLED display fabrication.
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0.7 mm repeatedly.
table S1. The characteristics of MoS2-based TFTs with different device structures.
movie S1. Active-matrix display operation on human wrist with external circuit.
movie S2. The dynamic operation of ultrathin display during peeling-off process.
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