














Fig. 4. Blind prediction of a complex RNA tertiary fold during RNA-Puzzle 18. (A) Two-dimensional diagram of the RNA-Puzzle 18 (Zika xrRNA) modeling problem,
highlighting motifs that needed to be built de novo in red (left) and SWM-predicted pairings (pastel colors; right). WC, Watson-Crick; HG, Hoogsteen. (B) Structures discovered
by SWM (green) are lower in energy and ~4 Å from models from conventional fragment assembly (FARFAR; blue); note that x axis is RMSD to the lowest free energy SWM
model, not the experimental structure (unavailable at the time of modeling). (C and D) Magnified view of noncanonical region built de novo for SWM model submitted for
RNA-Puzzle competition (C) and the subsequently released crystal structure (D). (E) and (F) give overlays in magnified and global views, respectively (SWM, salmon; crystal,
marine). (G) Fraction of noncanonical base pairs recovered and RMSD to native model obtained by Rosetta modeling (black; larger and smaller symbols are SWM and FARFAR,
respectively) and other laboratories (gray) for RNA-Puzzle 18. Points recovering zero noncanonical pairs are given a small vertical perturbation to appear visually distinct.
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non–Watson-Crick recovery). The only structural deviation involved
A53 (sand, Fig. 4C), which was predicted in SWM models to be un-
paired and stacked on neighbor A52 (orange, Fig. 4C). In the crystal,
A53 was unpaired but bulged out of the core to form a contact with a
crystallographic neighbor, while a 1,6-hexanediol molecule from the
crystallization buffer took its place (white sticks, Fig. 4C); this arrange-
ment was noted independently to be a likely crystallographic artifact
(27). There is striking overall fold agreement (3.08 Å RMSD; and 1.90
Å over just themost difficult noncanonical region, nucleotides 5 and 6,
26 to 40, 49 to 59, and 70 and 71; Fig. 4, C andD),much better than the
~10 Å best-case agreement seen in previous RNA-Puzzles of compa-
rable difficulty (2). Furthermore, SWM accurately predicted all non-
canonical base pairs (FNWC = 1; Fig. 4G).While one blind model from
another method achieved somewhat comparable RMSD to the crystal
structure (3.61Å), it predicted only one of six non–Watson-Crick base
pairs (Fig. 4G) and left a “hole” in the central noncanonical region
(RMSD of 3.67 Å in that region; fig. S8).
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DISCUSSION
We have developed an algorithm for modeling RNA structures called
stepwiseMonte Carlo (SWM), which uniquely allows for the addition
and deletion of residues during modeling guided by the Rosetta all-
atom free energy function. The minima of the energy landscape are
efficiently traversed by this method, allowing the ab initio recovery of
small RNA loop structures in hours of CPU time (Fig. 1). On an exten-
sive benchmark, SWM enables quantitative recovery of noncanonical
pairs in cases that include prior RNA-Puzzle motifs, junctions and
tertiary contacts involving numerous strands, and motifs without any
A-form helices (Fig. 2 and Table 1). We applied SWM to model
structures of three previously unsolved tetraloop/receptors and pro-
spectively validated thesemodels through chemicalmapping and exten-
sive compensatory mutagenesis (Fig. 3). Last, SWM achieved blind
prediction of all noncanonical pairs of a recent RNA-Puzzle, an intri-
cately folded domain of the Zika RNA genome whose pairings were
missed by other methods applied by our group and by other modeling
groups (Fig. 4). Themost striking aspect of the SWMmodels is the high
recovery of noncanonical pairs, which have largely eluded previous al-
gorithms when tested in blind challenges. These results support stepwise
nucleotide structure formation as a predictive algorithmic principle for
high-resolution RNA structure modeling. We expect SWM to be useful
in the ab initio modeling and, if extended to sequence optimization, the
discovery of novel motifs for RNA architectonic design (28, 29).

The results above focused on solving individual noncanonical mo-
tifs.While these problems arise frequently in real-worldmodeling (for
example, the unsolved tetraloop receptors), most functional RNA
structures harbor multiple junctions and tertiary contacts whose folds
become dependent on each other through the lever arm–like effects of
interconnecting helices. SWM is currently too computationally expen-
sive to simultaneously simulate all motifs and helices in these mole-
cules. It may be necessary to better parallelize the current algorithm to
allow concomitant modeling of multiple motifs on multiprocessor
computers, as is routine inmolecular dynamics simulations (30). Alter-
natively, modeling may benefit from iterating back and forth between
high-resolution SWM and complementary low-resolution modeling ap-
proaches likeMC-Sym/MC-Fold, Rosetta FARFAR, iFoldRNA, SimRNA,
and Vfold3D (6–10), similar to iterative approaches in modeling large
proteins (5). In addition, we note that SWM relies heavily on the as-
sumed free energy function for folding, and several of our benchmark
Watkins et al., Sci. Adv. 2018;4 : eaar5316 25 May 2018
cases indicate that even the most recently updated Rosetta free energy
function is still not accurate when SWM enables deep sampling. There-
fore, a critical open question is whether residual free energy function
problemsmight be corrected by improved RNA torsional potentials, treat-
ment of electrostatic effects, or use of energy functions independently
developed for biomolecular mechanics and refinement (5, 30, 31).
MATERIALS AND METHODS
Stepwise Monte Carlo
SWM was implemented in C++ in the Rosetta codebase. The source
code and the stepwise executable compiled for different environments
are beingmade available inRosetta release 3.6 and later releases, free to
academic users at www.rosettacommons.org. Full documentation, in-
cluding example command lines, tutorial videos, and demonstration
code, is available at www.rosettacommons.org/docs/latest/application_
documentation/stepwise/stepwise_monte_carlo/stepwise.

The full set of benchmark cases, including the 82 central to thiswork,
is available at https://github.com/DasLab/rna_benchmark. The reposi-
tory contains input files for each benchmark case; scripts for setting up
benchmark runs using either SWM or fragment assembly, including
automated job submission for multiple cluster job schedulers; and
scripts for creating analysis figures and tables. Finally, SWM is avail-
able through a web server on ROSIE at http://rosie.rosettacommons.org/
stepwise. Supplementary Methods gives detailed descriptions of SWM,
SWA, and fragment assembly ofRNAwith FARFARmodeling, evaluation
of RMSD and energetic sampling efficiency, and PDB accession IDs for
experimental structures.

Chemical mapping
Chemical mapping was carried out as in the study of Kladwang et al.
(32). Briefly, DNA templates for the P4-P6 RNA were produced
through polymerase chain reaction assembly of oligonucleotides of
length 60 nucleotides or smaller (IntegratedDNATechnologies) using
Phusion polymerase (Finnzymes). DNA templateswere designedwith
the T7 RNA polymerase promoter (5′-TTCTAATACGACTCACTA-
TA-3′) at their 5′ ends. A custom reverse transcription primer-
binding site (5′-AAAGAAACAACAACAACAAC-3′) was included
at the 3′ terminus of each template. RNA transcribed with T7 RNA
polymerase (New England Biolabs) was purified using RNAClean
XP beads (Beckman Coulter). RNA modification reactions were per-
formed in 20-ml reactions containing 1.2 pmol of RNA. RNAs were
incubated with 50 mMNa-Hepes (pH 8.0) at 90°C for 3 min and then
cooled to room temperature.MgCl2 at 0 or 10mM final concentration
was then added, followed by incubation at 50°C for 30 min and then
room temperature before chemical mapping. Chemical probes were
used at the following final concentrations: DMS (0.125%, v/v), CMCT
in water (2.6 mg/ml), and 1M7 (1-methyl-7-nitroisatoic anhydride)
[1.05 mg/ml in anhydrous dimethyl sulfoxide (DMSO) with final
DMSO concentration of 25%]. Chemical probes were allowed to react
for 15min before quenching. 1M7andCMCTreactionswere quenched
with 5.0ml of 0.5Msodium2-(N-morpholino)ethanesulfonate (Na-MES)
(pH 6.0), while the DMS reaction was quenched with 3.0 ml of 3MNaCl,
5.0 ml of b-mercaptoethanol, 1.5 ml of oligo-dT beads [poly(A)purist, Am-
bion], and 0.25 ml of a 0.25 mM 5′-FAM-A20-Tail2 primer, which
complements the reverse transcription primer-binding site at the
RNA 3′ ends. The quench mixture was incubated at room temperature
for 15 min, and the purification beads were pulled down with a 96 post
magnetic stand and washed with 100 ml of 70% ethanol twice for RNA
9 of 12
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purification. RNAs were reverse-transcribed with SuperScript III re-
verse transcriptase at 48°C for 40 min (Life Technologies). RNA
template was subsequently hydrolyzed for 3 min at 90°C in 0.2 M
NaOH. After pH neutralization, complementary DNA (cDNA) on
oligo-dT beads was pulled down by magnetic stand and washed with
ethanol as above. cDNAs were eluted into 10 ml of ROX 350 standard
ladder in Hi-Di Formamide (Life Technologies) using 1 ml of ROX
350 in 250 ml of Hi-Di Formamide. ABI 3700 sequencers were used
for electrophoresis of cDNA. Capillary electrophoresis data were
quantitated with HiTRACE (33). Data from these P4-P6 RNA experi-
ments have been posted to the RNA Mapping Database (34) at the
following accession IDs:
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Native gel shift experiments
Gel shifts were performed as previously described (22). Briefly, equi-
molar amounts of each RNAmonomer at various concentrations (up
to 20 mM final concentration) were mixed in water and denatured at
95°C for 1 min. Mixtures were cooled on ice for 2 min and annealed at
30°C for 5 min before the addition of Mg2+ buffer [9 mM tris-borate
(pH 8.3) and 15 mM Mg(OAc)2 final concentration]. After 30-min
incubation at 30°C, samples were incubated at 10°C for 15 min before
native gel analysis [7% (29:1) polyacrylamide gels in Mg2+ buffer at
10°C]. One of the monomers contained a fixed amount of 3′ end [32P]
pCp-labeled RNA (~0.25 to 0.5 nM final concentration). Monomer
and dimer bands were quantifiedwith ImageQuant, and dimer forma-
tion was plotted against RNA concentration. Kd’s (dissociation con-
stant) were determined as the concentration at which half of the
RNA molecules were dimerized and converted to DG (relative to
1 M standard state) through the formula DG = kBT ln(Kd/1 M), where
kB is the Boltzmann constant and T is the temperature.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/5/eaar5316/DC1
Supplementary Text
Supplementary Methods
fig. S1. Illustrated descriptions and modeling constraints of all 82 benchmark test cases.
fig. S2. Rosetta free energy versus RMSD summaries of SWM modeling runs for 82 complex
RNA motifs.
fig. S3. Comparison of model accuracy between SWM and fragment assembly of RNA with
FARFAR over an 82 motif benchmark.
fig. S4. Potential routes to overcome limitations in Rosetta free energy function.
fig. S5. Compensatory mutagenesis of the R(1) receptor read out through chemical mapping.
fig. S6. Comprehensive single mutant analysis of the tetraloop receptor R(1).
fig. S7. Global fold changes between the template viral xrRNA and the Zika xrRNA structure
prediction challenge.
fig. S8. Other models of RNA-Puzzle 18 (Zika xrRNA).
table S1. A comparison of the SWA and SWM methods using the same energy function as the
original SWA benchmark set of trans-helix single-stranded loops, and SWM results using the
updated Rosetta free energy function (SWM*).
table S2. Updates to the Rosetta energy function.
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table S3. Detailed performance of the stepwise Monte Carlo algorithm on 82 benchmark cases.
table S4. Detailed performance of the FARFAR algorithm on 82 benchmark cases.
table S5. Measurements of interaction free energy between R(1) mutant tetraloop receptors
and GGAA tetraloop.
data file S1. Three-dimensional SWM models canonical 11-nt:GAAA, R(1):GGAA, C7.2:GAAA,
and C7.10:GAAA tetraloop/receptors in PDB format.
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