




Fig. 1. Reconstructed Ediacaran depositional environments on the Yangtze Craton with the location of the study sections and integrated lithostratigraphy and
biostratigraphy of the terminal Ediacaran Dengying Formation, South China. (A) Simplifiedmap showing the location of the Yangtze Block (31, 32). (B) Paleogeographic
map of the Yangtze Block showing the location of theWuhe section and the Gaojiashan section. (C) Simplified stratigraphic column of the Ediacaran Doushantuo and Dengying
formations and the Early Cambrian Yanjiahe Formation (YJH), as well as the chronology for the evolution of major Ediacaran animal groups (15).
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at Gaojiashan (33). The Shibantan and Gaojiashan members in South
China may be partially correlated with the upper Nafun Group–lower
Ara Group in Oman, the upper Zaris Formation–Urusis Formation of
the Nama Group in Namibia, and the Khatyspyt Formation in Arctic
Siberia, on the basis of chemostratigraphic data and the occurrence of
the earliest skeletal animal fossils such as Cloudina (17).

We analyzed 27 samples from the Gaojiashan Member at the
Gaojiashan section, 56 samples from the Dengying Formation at the
Wuhe section, and 6 samples of the Early Cambrian Yanjiahe Forma-
tion at the Wuhe section in this study. Detailed geological background
of the study sites and analytical methods have been summarized in the
Supplementary Materials.
RESULTS
We observed large stratigraphic variations in d238U in the studied
sections (Fig. 2 and fig. S2). At Wuhe, the d238U of the Hamajing Mem-
ber declines upsection from −0.45 to −1.19‰. The Shibantan Member
has a relatively narrow variation in d238U from −0.81 to −1.20‰, with
an average of −0.97 ± 0.18‰. In the Baimatuo Member, a positive
excursion in d238U from −0.95 to −0.50‰ occurs at the Precambrian-
Cambrian boundary. This positive shift in d238U is followed by a
negative excursion in d238U from −0.52 to −0.82‰ in the overlying
Yanjiahe Formation.

At Gaojiashan, d238U in the lower Gaojiashan Member varies be-
tween −0.18 and −0.76‰ (fig. S2; only data that passed the diagenetic
evaluation described below are shown in Fig. 2). The d238Uof themiddle-
upper Gaojiashan Member shows relatively narrow variations in d238U
from −0.80 to −1.17‰, with an average of −0.94 ± 0.20‰; these values
are indistinguishable from those of the stratigraphically equivalent
Shibantan Member.
EVIDENCE FOR PRIMARY OCEANOGRAPHIC SIGNALS
Previous studies cited low Sr content, high Mn content, high Mn/Sr
ratio, and 18Odepletion as characteristics of diagenetic alteration byme-
teoric or burial fluids (34, 35). Here, we adopted a conservative Mn/Sr
ratio of≤2.5 as an initial diagenetic alteration threshold. The major-
ity of limestone and dolostone samples from theHamajing, Gaojiashan,
Shibantan, Baimatuo, and Yanjiahe members have Mn/Sr ratios less than
2.5 and are thus regarded as least-altered samples with the potential to pre-
serve primary geochemical signatures. In addition, we also investigated the
correlations of d238U-Mn content, d238U-Sr content, d238U-Mn/Sr,
d238U-Sr/(Mg + Ca), d238U-Mn/(Mg + Ca), and d238U-d18O for samples
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with Mn/Sr ratios less than 2.5 (table S2). No systematic trends are
apparent, suggesting that interaction with meteoric or burial fluids
did not significantly alter d238U (see the Supplementary Materials
for a more in-depth discussion of diagenesis).

In carbonates that underwent extensive recrystallization, d238U
may be diagenetically altered, and therefore, petrographic studies and
comparison of data frommultiple coeval sections are necessary to con-
firm that carbonate d238U captures depositional conditions (36). The
Gaojiashan, Shibantan, and Yanjiahe members typically preserve
pristine sedimentary fabrics such as microbially laminated micrites
(see the Supplementary Materials for details) and d13C signatures
consistent withmarine carbonates of similar age (31, 33, 35), suggest-
ing that their geochemistry was not strongly altered by diagenesis.
These petrographic observations and similar d238U signatures in two
widely separated limestone sections together strongly suggest that
d238U was not significantly altered by diagenesis. The Hamajing and
Beiwan members are characterized by micritic to microsparitic fabric-
retentive dolomite, with no apparent evidence for fabric-destructive
dolomitization (35) (see the Supplementary Materials for details). The
majority of dolostone samples (27 of 30) from theHamajing and Beiwan
members have d18O values greater than−6‰, and 87Sr/86Sr values from
both the Hamajing (0.7085 to 0.7088) and Baimatuo (0.7087 to 0.7102)
Zhang et al., Sci. Adv. 2018;4 : eaan8983 20 June 2018
members are well within the range of typical latest Ediacaran sea-
water (0.7085 to 0.7100) (34, 35, 37). A simple model of carbonate di-
agenesis predicts that U is more robust than d18O and 87Sr/86Sr with
respect to diagenetic alteration (20). Therefore, these latest Ediacaran
carbonates appear capable of preserving the d238U of contemporaneous
seawater.

Changes in lithology—such as dolomitization—could also poten-
tially affect d238U, but this is unlikely to be a major factor in the sec-
tions studied here. Romaniello et al. (29) reported a sharp decrease in
d238U below −0.6‰ corresponding to the appearance of dolomite in
a tidal pond in the Bahamian carbonate platform. Although the cause
for these negative values is not yet fully understood, d238U is strongly
correlated with the Mg/Ca molar ratio (R2 = 0.96), a proxy that indi-
cates the extent of dolomitization. By contrast, although the Shibantan
Member and the Yanjiahe Formation are composed of limestone and
the Hamajing Member and the Baimatuo Member are composed of
dolostone, no statistically significant correlations are observed between
d238U andMg/Camolar ratio for these carbonates atWuhe (R2 = 0.22).
Furthermore, a recent global compilation of d238U variation across the
Permian-Triassic boundary indicates that both the dolomitized sections
and the nondolomitized sections show congruent d238U records, indi-
cating that dolomitization alonemay not significantly alter paleo-d238U
Fig. 2. Geochemical profiles of the terminal Ediacaran Dengying Formation at the Wuhe and Gaojiashan sections. Stratigraphic columns and d13C data of
Gaojiashan (GJS) are from Cui et al. (31). d238U data from the Hamajing Member and samples with Mn/Sr > 2.5, Rb/Sr > 0.02, and Al > 0.35% are excluded in this plot, but they
are shown in fig. S2. PC-C denotes Precambrian-Cambrian boundary. Red and black circles represent data from limestone samples and from dolostone samples, respectively.
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records (21). These observations suggest that dolomitization has not
systematically altered the primary U isotopic record in the Wuhe
section (see the Supplementary Materials for details).

The effect of other changes in mineralogy—such as transforma-
tion of aragonite to calcite—on d238U is also likely to be small or neg-
ligible. The Shibantan and Gaojiashan limestone (low-Mg calcite)
was likely originally aragonite and/or high-Mg calcite. Prior studies
have shown that the distribution coefficient of U into aragonite is
higher than that for calcite (38). In contrast, the effect of mineralogy
and carbonate ion concentration on d238U is more limited. Uranium
isotope measurements of aragonite and high-Mg calcite primary pre-
cipitates exhibit no offset from seawater (29). Laboratory-precipitated
calcite and aragonite at pH ~8.5 showed only minor (<0.13‰) U iso-
tope fractionation between the liquid medium and the solid (39). In
contrast, at pH ~7.5, the precipitates of both polymorphs exhibit no
U isotope fractionation (39). Therefore, changing carbonatemineralogy
can result in large differences in uranium concentrations but only small
changes in the isotopic composition (20).

Detrital U contamination could also cause a d238U offset. Our sam-
ples were dissolved in 1M hydrochloric acid (HCl) before extraction
of U, which will minimize dissolution of any noncarbonate minerals
(for example, silicates) and organic matter. This expectation is sup-
ported by the high U/Al ratios in our analyses. The U/Al ratios of our
dissolved samples are two orders ofmagnitude higher than the upper
continental crust ratio [~0.331 parts per million (ppm)/weight % (wt %);
see the Supplementary Materials for details]. Assuming that all the
measured Al comes from detrital material, and using a U/Al ratio of
0.331 (ppm/wt %) for the upper continental crust, we estimate that de-
trital U accounts for <2%of totalU in the dissolved samples fromWuhe
and <10% of total U for the majority of Gaojiashan samples. Although
the estimated amount of U derived from detrital material is different
between the ShibantanMember atWuhe and its equivalent Gaojiashan
Member at Gaojiashan, the d238U signals of these two members are
essentially identical. Furthermore, there is no correlation between d238U
andAl contents (R2 = 0.19,P= 0.38 for Shibantan carbonates;R2 = 0.11,
P = 0.67 for Gaojiashan carbonates). Therefore, we are confident that
our observed d238U trends are not related to detrital contamination.

Changes in redox conditions of the local water column might affect
the ability of carbonate sediments to passively incorporate U(VI),
which is essential for capturing the d238U value of seawater (29). Spe-
cifically, it is essential that carbonates act as an oxic sink for U, with no
change in redox state (and thus a potential isotope fractionation) of
U in the local water column. We examined water column redox con-
ditions by looking at the Ce anomaly (Ce/Ce*) in our carbonates.
The Ce anomalies at Wuhe and at Gaojiashan range between 0.29 and
0.79 (mean of 0.50) and between 0.70 and 0.98 (mean of 0.74), respec-
tively, suggesting that local water column redox conditions at Wuhe
and at Gaojiashan were oxic (40). This finding confirms that our car-
bonates can be considered an oxic sink for U and thus can passively
capture the d238U signal of seawater.

In addition to the water column, it is also important to consider
pore water redox conditions because they can also affect the ability
of carbonate sediments to preserve the d238U value of seawater. For
example, under sulfidic pore water conditions, bulk carbonate sedi-
ments may incorporate 238U-enriched U(IV), leading to a d238U value
that is 0.2 to 0.4‰ heavier than seawater. We examined this possibility
usingMo concentrations and correlations between d238U and U/(Mg +
Ca) and Mo/(Mg + Ca) ratios. Under sulfidic pore water conditions, U
and Mo become authigenically enriched in carbonate (29), thus in-
Zhang et al., Sci. Adv. 2018;4 : eaan8983 20 June 2018
creasing U/(Mg + Ca) andMo/(Mg + Ca) values. In our samples, Mo
concentrations are significantly lower than those in modern Bahamas
box core sediments by approximately two orders of magnitude, and
there is no systematic stratigraphic variation in U/(Mg + Ca) or Mo/
(Mg + Ca) ratios, indicating that pore water euxinia during early di-
agenesis was less prevalent than that on the modern Bahamian car-
bonate platform (29). Furthermore, there are no statistically significant
correlations between d238U andU/(Mg +Ca) andMo/(Mg +Ca) in our
carbonates (table S2). Thus, the d238U record in these latest Ediacaran
carbonates was likely not significantly altered by pore water anoxia (see
the Supplementary Materials for details). We also note that if our car-
bonates were influenced by pore water anoxia, then our estimation of
terminal Ediacaran seawater d238U can be considered conservative, such
that we would underestimate the extent of ocean anoxia in the terminal
Ediacaran ocean.

After consideration of each of these factors, we conclude that the
Dengying carbonates likely reflect the d238U of late Ediacaran sea-
water. Samples that pass our diagenetic and detrital quality control
checks are plotted in Fig. 2.

The Shibantan Member and the stratigraphically correlated
Gaojiashan Member yield the most negative carbonate d238U values
ever reported from the geological record. The average d238U values of
the Shibantan Member and the Gaojiashan Member are −0.97 ±
0.18‰ and −0.95 ± 0.21‰, respectively. The Hamajing Member,
Baimatuo Member, and Yanjiahe Formation yield higher d238U val-
ues of −0.74 ± 0.54‰, −0.72 ± 0.25‰, and −0.71 ± 0.16‰, respectively
(Fig. 2). The extremely negative d238U values in the Gaojiashan and
Shibantan members are associated with positive carbonate carbon
isotope excursions in both sections (Fig. 2). A positive shift in d238U,
starting in the BaimatuoMember and peaking at the Dengying-Yanjiahe
boundary (maximumvalues of−0.6 to−0.5‰), occurs coevallywith a
negative carbonate carbon isotope excursion (Fig. 2 and fig. S1) that
has been observed globally near the Ediacaran-Cambrian boundary
(8, 9, 17). This positive d238U excursion is followed by another shift back
to relatively negative d238U values (minimum values of −0.7 to −0.8‰)
above the Ediacaran-Cambrian boundary, although more data from
Cambrian age sediments are required to confirm this pattern.
EXTENSIVE OCEANIC ANOXIA IN THE
LATEST EDIACARAN OCEAN
Since diagenesis cannot easily explain the very negative d238U values
observed in the Shibantan/Gaojiashan members, the data likely in-
dicate an episode of extensive expansion in marine anoxia. We eval-
uate the extent and the possible causes for those extremely negative
values below.

First, we evaluate the extent of oceanic anoxia based on U isotope
mass balance equations (Eqs. 1 to 3) for the terminal Ediacaran oceans
(see the Supplementary Materials for uranium isotope mass balance
constraints onU removal to anoxic sediments).We use the following
values for terminal Ediacaran seawater: d238Useawater =−0.95‰ (average
isotopic composition of the Shibantan and Gaojiashan members),
d238Uinput = −0.34‰, d238Uanoxic = −0.95‰ + Danoxic, and d238Uother =
−0.91‰ (that is, −0.95‰ + Dother, assuming a constant Dother of 0.04‰).
Using a Danoxic of 0.6‰, which is a representative average observed in
the modern Saanich Inlet (41), we calculate that fanoxic≈ 1, meaning
that anoxic/euxinic sinks were responsible for nearly 100% of the U re-
moval to sediments when the Shibantan/Gaojiashan members were
deposited (Fig. 3A). A simple mass balance seafloor area calculation
5 of 11
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(Eq. 4) predicts that nearly ~100% of the seafloor area was covered by
anoxic/euxinic sediments (Fig. 3B and see the SupplementaryMaterials
for anoxic seafloor modeling area calculation). Hence, the data sug-
gest that an episode of extensive ocean anoxia occurred during the
terminal Ediacaran Period. However, this extreme scenario is in-
consistent with the presence of benthic oxygen-breathing organisms
in the terminal Ediacaran Period, necessitating a sensitivity test of the
mass balance calculation to assess the impact of Danoxic values on the
model estimates.

The inferred extent of ocean anoxia calculated from the mass balance
model depends on the average fractionation factor between seawater
and anoxic/euxinic sediments. This parameter is not tightly con-
strained because data exist for only a small number ofmodern anoxic
environments. Considering this uncertainty, we explored the effect of a
large range of Danoxic values (0.4 to 1.3‰) on the marine U isotope
mass balance. The results are summarized in Fig. 3B. Large U isotope
fractionations of between 0.68 and 0.99‰ have been reported during
Zhang et al., Sci. Adv. 2018;4 : eaan8983 20 June 2018
reduction of U(VI) to U(IV) by different species of metal-reducing
bacteria (26, 27).While studies of U reduction inmodern anoxic ma-
rine basins commonly find apparent fractionation factors of Danoxic =
0.6 ± 0.1‰ (24, 41, 42), these fractionation factors are interpreted to
reflect diffusion-limited U reduction below the sediment-water
interface, which reduces the magnitude of the apparent isotope frac-
tionation factor by ~50% (24). Studies of U reduction in most mod-
ern anoxic basins have shown that little, if any, U reduction occurs
directly in the water column (41, 42). Nevertheless, there is some ev-
idence that microbial U reduction can occur at significant rates di-
rectly in the water column of strongly reducing marine basins, such as
Framvaren Fjord (43). Under these conditions, U reduction appears to
be accompanied by a larger isotope fractionation factor of 1.0 to 1.3‰,
similar to that predicted by laboratory experiments and theoretical cal-
culations (44, 45). Together, existing observations imply that reductive
removal of U from seawater could result in effective isotope fraction-
ation factors of 0.4 to 1.3‰ between euxinic sediments and the
overlying water column. In contrast, the isotope fractionation of U iso-
topes under ferruginous conditions remains poorly known. A recent
study suggested that U isotope fractionation may be similar in euxinic
and ferruginous settings (46); however, another study has suggested
that the fractionation of U isotopes under ferruginous conditions may
be close to 0‰ (36). Further studies are needed to confirm the fraction-
ation factor for ferruginous environments. We explore the implications
of these uncertainties below.

Although the fraction of U removal into anoxic/euxinic sediments
(Fig. 3A) and the calculated anoxic/euxinic seafloor areas (Fig. 3B)
are very sensitive to Danoxic values, extensive ocean anoxia is impli-
cated for all plausible Danoxic to drive terminal Ediacaran seawater
d238U values as low as −0.95‰. For instance, when applying Danoxic
of 0.6, 0.8, 1.0, and 1.2‰, the calculated percentages of U removal
into anoxic/euxinic sediments are 100, 75, 60, and 50%, respectively,
and the estimated anoxic/euxinic seafloor areas are ~100, ~27, ~10,
and ~6%, respectively. If we assume that the maximum value of
Danoxic likely to represent Neoproterozoic oceans is similar to the
maximum Danoxic values observed both in the modern Saanich Inlet
(0.79‰) (41) and in the Black Sea (0.83‰) (23, 42), then we calculate
that fanoxic = 0.7. This means that a minimum of 70% of the global
riverine U input was removed into anoxic/euxinic organic-rich sedi-
ments when the Shibantan/Gaojiashanmembers were deposited. On
the basis of this estimate and Eq. 4, our best estimate for the minimum
global anoxic/euxinic seafloor area during the terminal Ediacaran is
~21%. Hence, a significant portion of the seafloor area (21 to 100%)
overlain by anoxic/euxinic sediments during the terminal Ediacaran Pe-
riod is indicated for all plausible fractionation factors between anoxic/
euxinic sediments and seawater.

Our study highlights that marine anoxia may have been a global
phenomenon from ca. 551 to 541 Ma, although there were likely redox
fluctuations within local continental margin basins. For example, Fe-S-C
systematics and redox-sensitive metal enrichments from latest Ediacaran
sediments in South China suggest predominance of anoxia in deep-
water settings (14, 47, 48), with oxic water masses only present in very
shallow settings (31, 40). The Fe speciation and Ce anomaly data from the
Nama Group in Namibia suggest locally dynamic redox conditions with
frequent anoxia in deepwater settings (6, 7,13). TheFe speciationdata from
Newfoundland in Canada suggest locally oxic redox conditions (11).

A gradual recovery to heavier U isotope values occurs in the strati-
graphically overlying Baimatuo Member, with the highest d238U val-
ues (−0.6 to −0.5‰) occurring at the Ediacaran-Cambrian boundary
Fig. 3. Model results. (A) The fraction of oceanic U inputs removed into anoxic/
euxinic sediments (horizontal axis) varies as a function of the fractionation factor
(Danoxic; vertical axis) between seawater and anoxic/euxinic sediments. The estimates are
based on calculations using the average carbonate d238U of the Shibantan/Gaojiashan
members (d238U = −0.95‰). (B) Mass balance calculations show variations of seawater
d238U values as a function of anoxic seafloor area, keeping suboxic seafloor area fixed at
0% of total seafloor area and testing the sensitivity to possible Danoxic values. In reality,
suboxic seafloor area would co-vary with anoxic/euxinic seafloor area; thus, this
modeling exercise gives us the lowest estimation of anoxic/euxinic seafloor area.
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(Fig. 2). Above the boundary, d238U data hint at a return to low val-
ues (−0.7 to −0.8‰), although more data are needed to confirm this
pattern. These observations suggest a temporary transition to more
oxygenated conditions at the Ediacaran-Cambrian boundary (14, 49),
followed by a return to extensive ocean anoxia in the earliest Cam-
brian (14, 48).

Because the U isotope fractionation under ferruginous conditions
is poorly constrained, it is possible that the fluctuating d238U values
in the Dengying Formation represent global redox oscillation be-
tween ferruginous and euxinic conditions, rather than oscillation be-
tween oxic and anoxic conditions. For example, if the fractionation
factor associated with U removal to ferruginous sediments is close to
0‰ [as has been suggested by Hood et al. (36)], then the positive
d238U shift observed in the upper Wuhe section could be explained
by a shift from dominantly euxinic to ferruginous conditions. How-
ever, it is more likely that the variations reflect a shift between anoxic
and oxic conditions because higher d238U values in the lowestHamajing
and upper Baimatuo members and in the lowest Yanjiahe Formation
(Fig. 2) are consistent with existing evidence for widespread ocean ox-
ygenation immediately preceding the Hamajing stage (50) and at the
Ediacaran-Cambrian boundary (14, 49). Regardless, the main conclu-
sion still holds that the terminal Ediacaran Period experienced exten-
sive ocean anoxia (euxinic or ferruginous), although the detailed redox
history of this time period will not be resolved until the U isotope frac-
tionation in ferruginous settings is better understood.

The causes of rapid (million-year time scale) variations in global
marine redox chemistry during the terminal Ediacaran Period are
unclear and merit further study. However, variations between oxic
and anoxic conditions may have been linked to changes in conti-
nental weathering fluxes and increased marine PO4

3− levels. Phospho-
rus is commonly considered to be the ultimate biolimiting nutrient on
geological time scales, and it plays a role in controlling the amount
and spatial distribution of dissolved O2 in the oceans (51). The ter-
minal Ediacaran Period was associated with high continental weather-
ing as indicated by the significant rise in seawater 87Sr/86Sr (34, 35, 37).
High continental weathering rates could have increased marine phos-
phorus levels, thus stimulating marine productivity. On a short time
scale (104 years), increased phosphorus input to the ocean would have
led to rapid increases in primary production, higher O2 demand, and
deepwater anoxia and lower seawater d238U values (for example, the
Shibantan/Gaojiashan stage and the early Baimatuo stage) (51). On
a long time scale (106 years), it would have tended to increase organic
carbon burial and atmospheric oxygen (51) and elevated marine sulfate
concentrations (16, 31), ocean oxygenation, extensive phosphorite for-
mation (49), and higher seawater d238U values in the latest Ediacaran
and earliest Cambrian ocean (for example, the late Baimatuo stage and
the earliest Yanjiahe stage).
DYNAMIC OCEAN REDOX CONDITIONS
AT THE EDIACARAN-CAMBRIAN TRANSITION
The geochemical data from this study combinedwith previous Ediacaran
and Early Cambrian paleoredox studies yield a complex picture of os-
cillatory ocean redox conditions at the Ediacaran-Cambrian transition
(Fig. 4). Fe-S-C systematics and redox-sensitive metal enrichments in
organic-rich mudrocks (~635 to ~551 Ma) revealed three distinctive
Ediacaran ocean oxygenation events at ca. 635, ca. 580, and ca. 560 Ma
ago, with ocean anoxia possibly dominating the intervals between these
oxygenation events (14, 52). Studies focusing on the Shuram/Wonoka neg-
Zhang et al., Sci. Adv. 2018;4 : eaan8983 20 June 2018
ative carbon isotope excursion (~580 to~553Ma, although the time and
duration of this event are still uncertain) provided evidence of profound
deep ocean oxygenation (15, 16), although other studies argued that the
global response of ocean redox chemistry at this timewas likely complex
(14, 18, 47). Organic-richmudrocks deposited near the end of the Shuram/
Wonoka excursion have highMo enrichments and isotopically heavy
U and Mo isotope compositions that point to an episode of exten-
sive ocean oxygenation ca. 560 to 551 Ma ago (14, 50, 52). Here, we
provide strong evidence for an episode of extensive ocean anoxia that
follows this episode of oxygenation. Geochemical studies focusing on
the Ediacaran-Cambrian boundary (~541Ma) and the earliest Cambri-
an also present a complex picture of ocean redox chemistry, with ap-
parently conflicting views of both oxygenation (14, 49) and anoxia
(7, 8). However, our new d238U data provide evidence of an increase
in global ocean oxygenation at the Ediacaran-Cambrian boundary,
consistent with prior redox-sensitive trace metal enrichment and Mo
isotope evidence of ocean oxygenation at the Ediacaran-Cambrian
boundary (14, 49). Therefore, the overall picture emerging from this
study and prior studies is that global marine redox evolution across
the Ediacaran-Cambrian transition was not a simple unidirectional
march toward oxygenation but a dynamic and more complicated
history than expected, with rapid oscillations between anoxic and
oxic conditions.
OCEAN ANOXIA AND THE DECLINE
OF THE EDIACARA BIOTA
Although the geochronological constraints on Ediacaran successions
are generally poor, available data seem to suggest that the Ediacara
biota consists of three taxonomically distinct assemblages that at least
partially represent evolutionary successions (2): the Avalon (~570 to
560 Ma ago), White Sea (~560 to 550 Ma ago), and Nama (~550 to
540Ma ago) assemblages. The ShibantanMember of theDengying For-
mation (~551 to 541 Ma ago) studied in this paper contains Cloudina
that is only found in the Nama assemblage (33) and taxa (for example,
Rangea and Pteridinium) that are commonly present in the Nama
Group (53) but does not yield any fossils (for example, Dickinsonia
and Yorgia) that are characteristic of the White Sea assemblage (53).
Thus, in both taxonomic composition and depositional age, the Shibantan
Member represents an example of the Nama assemblage (3).
Fig. 4. Summary of global ocean redox chemistry in the Ediacaran and Early
Cambrian periods. Data sources: 1, Fe-S-C systematics and redox-sensitivemetal en-
richments in euxinic shales fromSouthChina (14); 2, S andC isotopes in carbonates and
siliciclastic rocks fromOman (16) and South China (15); 3, redox-sensitive metal enrich-
ments and Mo-U isotopes in organic-rich shales from South China (14, 50, 52); 4, U
isotopes in carbonates from South China (this study); 5, U isotopes in carbonates (this
study), Mo isotopes in phosphorites (49), and redox-sensitive trace metal enrichments
in euxinic shales from South China (14); 6, U isotopes in carbonates (this study). I to IV:
Members I to IV of the Doushantuo Formation. The Ediacaran temporal distribution is
modified after Laflamme et al. (3).
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In the context of the dynamic redoxmodel presented in this paper
(Fig. 4), it is tempting to consider the potential correlation between
ocean redox history and the evolution of the Ediacara biota. It seems
that the Ediacara biota diversified and thrived as oxygenated condi-
tions prevailed at 570 to 550 Ma ago but started to decline as oceanic
anoxia began to expand globally around 550 Ma ago. Among the
three assemblages of the Ediacara biota, the White Sea assemblage
shows the peak diversity, and there is a significant decline in both
global and local taxonomic diversity from theWhite Sea to the Nama
assemblage (2–5). This decline in the terminal Ediacaran Period
seems to be a robust pattern that has been supported by rarefaction
analyses of both global and local taxonomic data (4, 5). TheU isotope
data presented here suggest that oxic water masses began to contract
around 550 Ma ago, raising the intriguing possibility that decline of
the Ediacara biota is correlated with and may be caused by the ex-
pansion of oceanic anoxia and dynamic redox conditions in both
temporal and spatial scales. It is possible that the terminal Ediacaran
expansion of oceanic anoxia not only played a role in the decline of
the Ediacara biota but also was a stimulus for the evolution of a new
suite of mobile animals that could better explore localized oxygen
oases or refugia (for example, oxic microenvironments associated
with microbial mats). We emphasize that the possible role of anoxia
in driving the decline of the Ediacara biota does not necessarily rule
out the importance of ecological factors (5) because the environ-
mental perturbation and biotic replacement models do not need to
be mutually exclusive.

This study provides the first direct geochemical evidence support-
ing an episode of extensive oceanic anoxia in the terminal Ediacaran
Period, coincident with the decline of the Ediacara biota as recorded
in the Nama assemblage. Hence, the Ediacara biota likely capitalized
on a geologically brief oxygenated window about 570 to 550 Ma
ago, but subsequent oceanic anoxia along with other environmental
and ecological factors may have contributed to its decline in the
terminal Ediacaran Period.
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Analytical methods for uranium isotopes
Fresh carbonate samples that were collected from the field were crushed
into small fragments in the laboratory. The fragments were cleaned
using deionized water and dried. We carefully chose fresh fragments
without veins and powdered these to <200 mesh using a ball mill and
silicon nitride jars.

Approximately 3 g of each sample was dissolved in 1 M HCl at
room temperature. This method minimizes dissolution of any non-
carbonate minerals (for example, silicates and sulfides) and organic
matter. Detailed protocols for the dissolution of ~3 g of carbonate
powder are summarized in table S1. This protocol uses a 1.5× excess
of HCl to ensure complete dissolution of the carbonate, thus avoid-
ing U isotope fractionation from selective leaching of various carbo-
nate phases.

Digests were left for 24 hours at room temperature to ensure com-
plete reaction. Following this, samples were centrifuged, and the super-
natant was separated. Major, minor, and trace element concentrations
were measured on a Thermo iCAP quadrupole inductively coupled
plasma mass spectrometer at the W. M. Keck Laboratory for Envi-
ronmental Biogeochemistry at Arizona State University (ASU) on
splits from each supernatant. Typical precision was better than 5%
based on repeated analysis of in-run check standards.
Zhang et al., Sci. Adv. 2018;4 : eaan8983 20 June 2018
Before column chemistry, appropriate amounts of the 236U:233U
double spike (19, 23, 29) were added to each sample based onmeasured
uranium concentrations. The spike-sample mixtures were evaporated
to dryness and taken up in 3 N HNO3. Uranium was purified using
the UTEVA (Uranium and TEtraValent Actinides) method (19, 23, 29)
for isotopic analysis. Tominimize thematrix effects, all sampleswere put
through column chemistry twice. Purified U was dissolved in 0.32 M
HNO3 and diluted to a U concentration of 50 parts per billion (ppb).
Uranium isotopes were measured at ASU on a Thermo-Finnigan Nep-
tune multi-collector ICP-MS at low mass resolution. When using a 75-
and100-mlmin−1 nebulizer, a 50-ppb sample solution yielded 17 to 22 V
and 38 to 45 V, respectively, of 238U signal on a 1011-ohm amplifier.
Double spiked CRM145 (50 ppb of U) was analyzed by bracketing
every group of two samples. A secondary standard (CRM129a) and
an in-house ICP solution (Ricca PU1KN-100) were measured after every
15 measurements. Sample d238U values were normalized by the average
of the bracketing standards.

The isotopic composition of standards CRM145, CRM129a, and Ricca
was −0.00 ± 0.06‰ (2s), −1.71 ± 0.05‰ (2s), and −0.23 ± 0.06‰ (2s),
respectively, during the measurements of the Wuhe samples using a
100-ml min−1 nebulizer. The isotopic composition of standards
CRM145, CRM129a, and Ricca was −0.00 ± 0.08‰ (2s), −1.68 ±
0.08‰ (2s), and −0.23 ± 0.08‰ (2s), respectively, during themeasure-
ments of the Gaojiashan samples using a 75-ml min−1 nebulizer. The
results (including samples, summary of standards, blanks, and sample
replicates) are summarized in databases S1 to S4.

Analytical methods for carbon and oxygen isotopes
of the Wuhe carbonate samples
Samples for d13Ccarb and d18O were collected as ~300-g hand
samples at 1-m intervals from a section near Wuhe, South China,
and microdrilled using a 1-mm bit on a bench press drill following
the procedures of Meyer et al. (32). Veins and vugs were avoided
during drilling. The carbonate powders were then allowed to react
with 100% phosphoric acid at 70°C in a MultiFlow-Geo headspace
sampler device connected to an Isoprime 100 continuous flow iso-
tope ratio mass spectrometer. Carbon and oxygen isotope composi-
tions are reported in standard d notation as per mil deviations from
Vienna Pee Dee Belemnite. Reproducibility for repeated analysis of
international standards IAEA-CO-1, IAEA-CO-9, and NBS 18 was
better than 0.10‰ for d13Ccarb and 0.22‰ for d18Ocarb.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/6/eaan8983/DC1
fig. S1. Simplified schematic representation of the major source and sinks of U in the modern
ocean along with their isotopic compositions (sources) or associated isotopic fractionations
(sinks) [modified after Tissot and Dauphas (54) and Wang et al. (55)].
fig. S2. Geochemical profiles for the study sections.
fig. S3. Petrographic images of the Hamajing Member.
fig. S4. Petrographic images of the Shibantan Member.
fig. S5. Petrographic images of the Baimatuo Member and the Yanjiahe Formation.
fig. S6. Chemostratigraphic profiles of d238U, Sr content, Mn content, Mn/Sr ratio, and d18O for
the study sections.
fig. S7. Chemostratigraphic profiles of d238U, Mn/(Mg + Ca) ratio, and Sr/(Mg + Ca) ratio for the
study sections.
fig. S8. Cross-plots of d13C-d18O for the study sections.
fig. S9. Chemostratigraphic profiles of d238U, Al content, Rb/Sr ratio, U/Al ratio, and Mg/Ca
molar ratio for the study sections.
fig. S10. Chemostratigraphic profiles of U and Mo concentrations, Ce anomalies, U/(Mg + Ca)
ratio, and Mo/(Mg + Ca) ratio for the study sections.
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fig. S11. Mass balance modeling calculations show variations of seawater d238U values as a function
of anoxic/euxinic seafloor area while keeping Danoxic constant (+0.6‰) and testing various suboxic
areal extents.
fig. S12. Calculated combination fanoxic and fsuboxic to account for latest Ediacaran seawater
average d238U of −0.95‰.
table S1. The sample-dissolving procedure.
table S2. Cross-correlation coefficients (R2) and P values calculated to test the influence of
diagenetic indicators on d238U (confidence interval, 95%).
table S3. Summary of the parameters used in the modeling excise.
database S1. d238U data with associated geochemical data at the Wuhe section.
database S2. d238U data with associated geochemical data at the Gaojiashan section.
database S3. Analytical results of standard summary (Wuhe measurements).
database S4. Analytical results of standard summary (Wuhe measurements).
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