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Nonequilibrium strongly hyperuniform fluids of circle
active particles with large local density fluctuations
Qun-Li Lei1, Massimo Pica Ciamarra2,3*, Ran Ni1*

Disordered hyperuniform structures are an exotic state of matter having vanishing long-wavelength density fluctua-
tions similar to perfect crystals but without long-range order. Although its importance in materials science has been
brought to the fore in past decades, the rational design of experimentally realizable disordered strongly hyperuniform
microstructures remains challenging. Here we find a new type of nonequilibrium fluid with strong hyperuniformity in
two-dimensional systems of chiral active particles, where particles perform independent circularmotions of the radius
R with the same handedness. This new hyperuniform fluid features a special length scale, i.e., the diameter of the
circular trajectory of particles, below which large density fluctuations are observed. By developing a dynamic
mean-field theory,we show that the large local density fluctuations canbe explained as amotility-inducedmicrophase
separation, while the Fickian diffusion at large length scales and local center-of-mass-conserved noises are responsible
for the global hyperuniformity.
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INTRODUCTION
Perfectly ordered structures, such as crystals or quasi-crystals at zero
temperature, are usually associated with some discrete symmetries
and exhibit long-range correlations, leading to the structure factor
of the system S(q → 0) = 0 (1). Similarly, the local density variance
in these structures 〈dr2〉 scales with the window size of observation L
as 〈dr2〉 ~ L−l with l = d + 1, where d is the dimensionality of the
system. In contrast, in normal disordered structures, e.g., conventional
gases, liquids and amorphous solids, and even thermalized crytals, the
long-wavelength density fluctuationmakes S(q→ 0) = const. > 0 and
l = d. Recently, the concept of hyperuniformity was introduced to
study the state of matter (2). A structure is hyperuniform when it has
vanishing long-wavelength density fluctuations, i.e., S(q→ 0) ~ qa→ 0
witha > 0 and 〈dr2〉~L−lwith d< l≤ d+1 (2). It has been found in the
past two decades that, besides the ordered hyperuniform structures, i.e.,
perfect crystals and quasi-crystals, a number of disordered structures are
also hyperuniform, including the maximally random jammed packing
(3), avian photoreceptor patterns (4), and some nonequilibrium
systems (5–10).

Disordered hyperuniform structures have received an increasing
amount of scientific attention, as some strongly hyperuniformdisordered
structures with l = d + 1 exhibit similar properties as crystals with even
better performance, e.g., large isotropic photonic bandgaps insensitive
to defects (11) can be opened at low dielectric contrast (12). Although
ideal hyperuniform structures similar to perfect crystals are unavoidably
affected by thermal excitation, it still shows promise in designing robust
disordered materials with novel functionalities (1, 13–16). By far, vari-
ous protocols were developed to design particle interactions to form
disordered hyperuniform ground states in classical many-particle
systems. However, the resulting interactions normally have delicate
long-range or multibody terms (1), making their experimental realiza-
tion highly challenging. An alternative approach is to use driven systems,
e.g., self-organized colloidal suspensions under periodic shearing
(17), to form nonequilibrium dynamic hyperuniform states, which can
effectively avoid the dynamic trapping, and, in principle, have a higher
resistance to thermal perturbations (7). Now, experimentalists only
succeeded in generating weakly hyperuniform structures with l ≃
d + 0.5 (8) using this method. Nevertheless, this is certainly a direc-
tion that deserves further investigation (10), as some self-driven
systems, or active matter systems, have produced a number of un-
expected emergent phenomenanever found in correspondingequilibrium
systems (18–22). However, in conventional active matter systems, i.e.,
active nematic systems and active Brownian particles systems, giant
number fluctuations characterized by l < d (19) and motility-induced
phase separation (MIPS)with l≃ 0 (20–23) are usually observed. These
large density fluctuations seemingly prohibit the formation of hyperuni-
form structures in active matter systems.

Recently, chiral active matter whose motion is chiral-symmetry
broken, e.g., active particles/swimmers with circular motion in two-
dimensional (2D) (24–28) or active spinner fluids (29), has attracted
considerable attention. Both experiments and simulations have shown
many interesting collective phenomena in these systems (25, 30–33). In
this work, using computer simulations combinedwith analytic theories,
we study a 2D system of circle active particles, which perform
independent circular motion with the same handedness and random
circling phases. We show that in the limit of strong driving or zero
thermal noise, with increasing density of particles or radius of circular
motion R, the system undergoes an absorbing-active transition forming
a nonequilibrium strongly hyperuniform fluid phase with density var-
iance 〈dr2〉 ~ L−3 (L → ∞) the same as in perfect crystals. Further
increasing the density or R triggers the formation of dynamic clusters,
which results in large local density fluctuations. These fluctuations are
“confined” within the length scale of R, while the strong hyperunifor-
mity persists at large length scales. This surprising coexistence of large
local density fluctuations and the global hyperuniformity is explained
by dynamic mean-field theories at different length scales.
RESULTS
Model
As illustrated in Fig. 1A, we consider a 2D suspension of N active
colloidal particles with diameter s. Each particle experiences an in-
plane force Fp with random initial orientation and a constant torque
W perpendicular to the plane, which drive the particles to perform
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circular motion with the same handiness (30, 31). The dynamics of
particle i at finite temperature T is governed by the over-damped
Langevin equations (26, 30)

r
:
iðtÞ ¼ g�1

t ½ � ∇iUðtÞ þ FpeiðtÞ� þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=gt

p
xtiðtÞ ð1Þ

e
:
iðtÞ ¼ g�1

r Wþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=gr

p
xri ðtÞ

h i
� eiðtÞ ð2Þ

where ri and ei are the position of particle i and its self-propulsion
orientation, respectively, and kB is the Boltzmann constant. gt/r is the
translational/rotational friction coefficient. For simplicity, we set gt =
gr/s

2.xtiðtÞandxriðtÞ represent Gaussian noises with zeromean and unit
variance.We useWeeks-Chandler-Andersen (WCA) potential tomimic
the excluded volume interaction between colloidal particles U(t) (see
Lei et al., Sci. Adv. 2019;5 : eaau7423 25 January 2019
Methods). The packing fraction of the system is defined as f =
rs2p/4, where r is the particle density. The self-propulsion speed of par-
ticle is v0 ¼ g�1

t Fp. The reduced noise strength in the system is defined
as TR = kBT/(F

ps) that measures the strength of thermal noise com-
pared with the self-propulsion. In the zero noise limit, i.e., TR = 0,
isolated active particles perform circular motions with fixed radius
R = Fps2/W and period G = 2pgr/W. This athermal noise-free situation
is the major focus of this work, and the effect of thermal noise is
discussed later.

Absorbing-active transition
We first simulate systems withN = 10,000 and TR = 0. Under low pack-
ing fraction f and smallR condition, we find that the system falls into an
absorbing or arrested state, in which each particle performs an
independent circular motion without collisions and the mean squared
displacement (MSD) 〈Dr2〉 of particles develops a plateau at long time
 on F
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Fig. 1. Absorbing-active transition. (A) Schematic of the 2D system of circle active particles. (B) Dynamic phase diagram in the representation of packing fraction f and circle
radius R. (C andD) Typical snapshots of the active and adsorbing states near the critical point with f = 0.20with R=1.75s, where the color indicates the self-propulsion orientation
of each particle. These two states are marked as magenta and cyan solid symbols, respectively, in (E). (E) MSD as functions of time for systemwith R = 1.75s started from random
configurations. Red line, active state (f = 0.22); blue line, absorbing state (f = 0.01); green line, system near the critical point (f = 0.20) in which the system ultimately falls into the
absorbing state after a long simulation time. (F andG) Diffusion constant as functions of f near the critical point fc for systems with different R. The dashed lines are the fitting of
power law (f− fc)

b. (H and I) The structure factor S(q) and theorientation correlation functionC(r) of active (magenta) and absorbing (cyan) states asmarkedby solid symbols in (E).
(J) The measured critical exponent b from (G) as a function of R. For all the calculations, N = 10,000 and TR =0.
2 of 9
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(blue line in Fig. 1E).With increasing f orR, the collisions between par-
ticles become more frequent, making the system unable to find a non-
interacting state. Thus, the system remains at an active diffusive state
with MSD 〈Dr2〉 ~ 4Dt (t → ∞) (red line in Fig. 1E). Here, D is the
long-time diffusion constant. The phase behaviors of the system are
summarized in the phase diagram Fig. 1B. In the following, we focus
on the absorbing-active transition close to the boundary of two phases.

In Fig. 1F, we plotD as a function of f − fc for different R. Here, we
obtain fc by fitting with the critical power law D ~ (f − fc)

b, which
determines the phase boundary in Fig. 1B. One can observe a sharp
transition from the absorbing state [D(f) = 0] to the active state
[D(f) > 0]when increasing f at a smallR=1.75s. The transition becomes
smoother as R increases. In Fig. 1G, we show the log-log plot of D as a
function of f − fc. The obtained slope b is given in Fig. 1J.We find that
the critical exponent b is about 0.15 for R = 1.75s, which is substan-
tially smaller than the values in classical absorbing transitions, i.e., b =
0.58 for directed percolation and b = 0.64 for conserved directed perco-
lation (Manna type) (6–34). Such a small critical exponent is
independent of system size (see fig. S1). With increasing R, we find that
b increases to around 0.5 for R > 10s. A similar increase of the critical
exponent with increasing interaction range (in our case, R) has been
reported (35). In our system, fc would decrease to zero with increasing
R. Hence, b at large R cannot be directly obtained in our system due to
the divergence of simulation time needed at the dilute limit.

To understand the physics behind the absorbing-active transition at
small R, we choose a packing fraction f = 0.20 close to the critical point
(fc = 0.195) for system with R = 1.75s. TheMSD for the system started
from random configuration is shown by the green line in Fig. 1E, in
which one can see that the system ultimately falls into the absorbing
state after staying at the active state for a long time. In Fig. 1 (C and
D), we show typical snapshots for the active state and absorbing state
before and after the absorbing transition, as indicated by the magenta
and cyan symbols in Fig. 1E.Movies for these two states can be found in
movies S1 and S2. One can notice a marked structural difference be-
tween these two states. In the absorbing state, particles with similar
orientation form finite synchronized clusters, while the active state is
more homogeneous without noticeable spatial heterogeneity. This
structural difference is also reflected in the structure factor S(q)
and orientation correlation function C(r) = 〈∑i≠j ei ⋅ ej d(rij − r)〉/rN,
as shown in Fig. 1 (H and I). Compared with the active state, S(q) for
the absorbing state develops a pronounced peak at qs ≃ 0.2, and the
corresponding C(r) also shows a stronger orientation correlation. The
synchronized clusters formation in our circle active particle systemwith
isotropic circling-phase distribution shares a similar mechanism with
the phase separation observed in an experimental bimodal phase-
distributed system (see also fig. S4) (26). Both are a result of a crowding-
induced attraction between particles with the same circling phase. We
find that this distinct structural transformation during the absorbing
transition is absent in the conventional absorbing transition (5, 6, 17, 34),
suggesting that the small critical exponentmeasured in our systemhas a
structural origin. With increasing R, the structural difference between
two phases becomes weaker (see fig. S2), which occurs simultaneously
with the increase of b. Further studies combining with finite-size analysis
are necessary for determining whether the absorbing-active transition at
small R is first order.

Hyperuniformity and large local density fluctuations
As shown in Fig. 1H, for the active state near the critical point in the
systemwithR = 1.75s, the structure factor of the system exhibits hyper-
Lei et al., Sci. Adv. 2019;5 : eaau7423 25 January 2019
uniform scaling S(q) ~ q(q → 0). In the random organization model
aiming to mimic the colloidal suspension under periodic shearing,
a similar hyperuniform scaling was observed near the critical point
(5, 6). However, for relative large R, the critical q scaling shifts to a
faster q2 scaling (see fig. S2). To explore this further, we simulate a
system of N = 40,000 circle active particles. In Fig. 2A, we first plot
the MSD for active state systems with different R at f = 0.2. We find
that the diffusivity in the system rises slightly with increasing R. By fur-
ther checking the scalings of the density variance 〈dr2〉 and S(q) for dif-
ferent R (see Fig. 2, B and C), we observe a strong hyperuniformity in
the systems with R ≤ 25s, as indicated by the asymptotic behaviors:
〈dr2〉 ~ L−3 (L→∞) and S(q) ~ q2(q→ 0). From 〈dr2〉, one can iden-
tify an R-dependent length scale LHU, above which the system
becomes hyperuniform, while below which the system behaves like
normal fluids, i.e., 〈dr2〉 ~ L−2 (Fig. 2B). In S(q), a similar threshold
qHU can be found, which features the end of the hyperuniform scaling.
With increasing R, LHU increases and qHU decreases until R ≥ 50s,
where the hyperuniform scaling becomes less apparent due to the sys-
tem finite-size effect as discussed below. This implies that R controls
the length scales at which the system exhibits hyperuniformity.

Figure 2 (D to F) shows the result of an analogous investigation for
higher-density systems with f = 0.4. Compared with low-density
systems, we observe pronounced enhancement of the diffusivity with
increasing R (Fig. 2D). The high-density systems also show clear hyper-
uniform scaling at large length scales forR≤ 50s and the thresholdLHU
(or qHU) increases (or decreases) with increasing R (Fig. 2, E and F).
However, at f = 0.4, we find 〈dr2〉 ~ L−l with l < 2 when L ≪ LHU
and l decreases with larger R. This implies that at length scales L ≪
LHU, the system exhibits large density fluctuations, whose strength
and length scale are both controlled byR. This large fluctuation can also
be identified by the scaling S(q) ~ q−2 for q > qHU as shown in Fig. 2F,
which was reported as a signature of critical instability of active particle
system undergoingMIPS (20). However, in most of our systems except
R ≥ 100s, S(q) ~ q−2 does not diverge at qHU ≃ 0 as in MIPS (20) but
stops at a finite qHU. This suggests that the large local density fluc-
tuations observed in our system are due to clustering or microphase
formation. The crossover of two different scalings, i.e., large density
fluctuations and hyperuniformity, creates a peak in S(q) at qHU,
whose height increases with larger R. Actually, for R ≥ 100s, we
speculate that in much larger systems, one can still observe the peak
at finite qHU for f = 0.4 and the hyperuniform scaling for both f = 0.2
and 0.4, as suggested by later theoretical analyses. In fig. S3, S(q) is
shown for a larger system (N = 102,400) at f = 0.4. The result agrees
with our speculation. Typical snapshots of the system at f = 0.4 with
various R are shown in Fig. 2G (also in movies S3 to S7 and fig. S3),
and one can seemany finite-size clusters disappearing and reforming
in the system. The average size of these dynamic clusters increases
with increasing R, and at R = 1000s, because of the finite-size effect,
the clusters percolate the simulation box. These findings are intriguing,
as hyperuniformity and large density fluctuations induced by dynamic
cluster formation are two seemingly opposite phenomena, which co-
exist here in the same system at different length scales. In the following,
we formulate dynamic mean-field theories to understand this new dy-
namic hyperuniform fluid with large local density fluctuations.

Dynamic mean-field theory
Starting from the N-body Smoluchowski equation for active Brownian
particles (20, 21), one can prove (section S1) that in a homogeneous
circle active particles systemwith vanishing orientation order parameter
3 of 9
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Fig. 2. Dynamic hyperuniform state. (A and D) MSD as functions of t for various R. (B and E) Density variances �dr2� as functions of window size L for various R. The L−3

asymptotic line indicates the hyperuniform scaling, which is the same as in perfect crystals. The L−2 scaling is for normal fluids, while L0 is for clustering- or phase
separation–induced large density fluctuations. (C and F) Structure factor S(q) for various R. The q2 asymptotic line indicates the hyperuniform scaling, while the q−2 line
represents clustering- or phase separation–induced large density fluctuations. (G) Typical snapshots for systems at f = 0.4 with various R. For all the calculations, N =
40,000 and TR.
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Q ¼ 〈eeT � 1
2 1〉, the time-dependent local density field r(r, t) and the

local polarization field p(r, t) satisfy

∂tr ¼ �∇⋅½veðrÞp� De∇r� ð3Þ

∂tp ¼ � 1
2
∇½veðrÞr� þ De∇2pþWr � p ð4Þ

where ve(r) = v0 + zr is a density-dependent effective velocity of par-
ticles with a negative z reflecting the motility-induced “self-trapping”
effect.De is the effective diffusion constant originated from the “evasive”
motion of particles due to the collisions with neighboring particles
(21). Wr ¼ g�1

r W is the reduced torque. The isotropic homogeneous
state, i.e., ½rðr; tÞ ¼ �r; pðr; tÞ ¼ 0�, is the solution to Eqs. 3 and 4. By
making a weak perturbation around this state, i.e., ½rðr; tÞ ¼ �rþ
drðr; tÞ; pðr; tÞ ¼ dpðr; tÞ�, we obtain two linearized equations in
the Fourier space with the first-order approximation

iwþ Deq
2

� �
drq;w ¼ �iveq ⋅pq;w ð5Þ
ðiwþ Deq
2Þpq;w ¼ Wr � pq;w � iwqdrq;w ð6Þ

where [drq,w, pq,w] = ∫dr ⋅ e−iq⋅r∫dt e−iwt[dr, p], andw ¼ v0=2þ z�r
is the parameter indicating the strength of self-trapping effect. By solving
Eqs. 5 and 6, one obtains the dispersion relationship, which includes a
diffusive mode w0 = iDeq

2 and two nondiffusive modes

w1;2 ¼ iDeq
2±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vewq2 þW2

r

q
ð7Þ

The growth rate of the mode is k = Re(iw), whose sign determines
whether the perturbation dr ~ eiwt+iq⋅r grows or decays. One can
prove that the mode 1 always decays, while the mode 2 may grow
for w < 0 with

k2 ¼
�Deq2 q <

v0ffiffiffiffiffiffiffiffiffiffiffi�vew
p R�1

�Deq2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�vewq2 �W2

r

q
q >

v0ffiffiffiffiffiffiffiffiffiffiffi�vew
p R�1

8><
>: ð8Þ
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which produced almost the same experimental result in (26). Our result
is shown in fig. S4, from which we find the bimodal-distributed system
falls into a phase-separated absorbing state for R = 1s but stays in an
active mixing (lane) state for R = 3s, consistent with the previous
finding (26). In the active mixing state, we observe the same hyperuni-
form scaling S(q → 0) ~ q2. This result demonstrates the robustness
of the hyperuniformity mechanism unveiled by this general model and
suggests a high possibility of realization in experiments. Moreover, it
also suggests that other active systems satisfying the two ingredients,
such as active spinner systems (29) or size/interaction oscillating particle
systems (39), may be used to produce the same hyperuniformity as well.

Effect of thermal noise
According to the definition, a perfectly hyperuniform state requires S(0)
to exactly equal zero. However, in real experimental systems, thermal
noise is unavoidable. On the basis of the fluctuation-compressibility
relationship

Sð0Þ ¼ kTrkBT ð14Þ

any thermal equilibrated systems with the positive isothermal compress-
ibility kT at finite temperatures cannot be strictly hyperuniform due to
thermal excitation (13). In crystals, thermal excitation appears as phonon
modes, which cause background scattering or thermal diffuse scattering,
whose effect can be measured by the Debye-Waller factor (13, 40).
Nevertheless, the wide application of crystal materials indicates that ther-
malization onlyweakens but does not destroymost physical properties of
the ground-state crystal. Similarly, near-hyperuniformity (1, 13, 15) in
disordered structures may also be enough to achieve some desired
functions, e.g., isotropic photonic/electronic bandgaps (14, 15). In Fig. 5,
we analyze the influence of thermal excitation on the ground-state hy-
peruniform system with f = 0.2 and R = 3s. We find that with a grad-
ual increase of the reduced noise strength TR from zero, S(q → 0)
begins to saturate at some nonzero value, which increases along with
TR (Fig. 5A). In section S4, we introduce the thermal noise f = [ fx, fy]
in Eq. 11 as

xðtÞ ¼ ffiffiffi
�r

p
∇⋅½∇hðtÞ þ fðtÞ� ð15Þ
Lei et al., Sci. Adv. 2019;5 : eaau7423 25 January 2019
where 〈 fi(r, t)fj(r′, t′)〉 = 2Dthermdijd(r − r′)d(t − t′) with Dtherm ¼
kBTg�1

t ð1þ R2=s2Þ the self-diffusion constant of effective particles
due to the thermal Brownian motion (25). Here, we assume that the
thermal noise is a first-order weak perturbation on the chaotic noise
h(t), which leads to the decoupling of these two noise sources: 〈 fi(r, t)h
(r′, t′)〉= 0. Then, we can estimate So(q) as a function of the reduced noise
strength TR for low-density systems as

SoðqÞ ¼ v0s
De

1þ R2

s2

� �
TR þ A2

2De
q2 forðq < qHUÞ ð16Þ

In Fig. 5A, we plot the theoretical prediction of Eq. 16 as dashed lines
for differentTR values atR= 3s and f =0.2, by assuming them all across
the same So(qHU) point. In Fig. 5B, we compare the So(0) from the the-
oretical predictionwith the So(0) obtained from the fitting of simulation
results (see Methods) for systems with R = 3s and 10s at f = 0.2. One
can find quantitative agreements between simulation and theoretical
predictions in Fig. 5, which suggest that the susceptibility of hyperuni-
formity to the noise in our nonequilibrium system is similar to that in
thermalized crystals, i.e., Eq. 14. However, we also emphasize the
difference: In our nonequilibrium system, the saturated value of So(0)
is determined by the driving force as well. Therefore, in experiments, it
is possible to observe a large range of hyperuniform scaling in S(q) or
density variance as long as the driving force is much larger than the
thermal noise, i.e., TR ≪ 1.
19
DISCUSSION
In conclusion, by combining computer simulations with theoretical
analyses, we investigate the dynamic phase behaviors in 2D systems
of circle active particles. In the zero-noise limit, we find that with
increasing the density of system or the radius of circular motion R,
the system undergoes a transition from an absorbing state to an active
fluid state, which is accompanied by a structural transformation for
small R. In the active fluid state, we find a characteristic length scale
LHU. For L ≫ LHU, the system exhibits strong hyperuniformity with
the density variance scaling the same as in perfect crystals, while for L
≲ LHU, we observe normal random fluctuations at low density and large
density fluctuations (cluster formation) at high density. To understand the
mechanism of the phase behaviors of the system, we develop a dynamic
mean-field theory. Linear stability analysis suggests that at the mean-field
level, the large local density fluctuations at relative large R are a result of
motility-induced microphase separation, which is confined within the
length scale of R. For the global hyperuniformity, we attribute it to the
interplay between the Fickian diffusion of active particles at large length
scales and local particle collisions that conserve the center ofmass (10).
Our work demonstrates that two extreme fluctuations, i.e., large density
fluctuations and hyperuniformity, can coexist in the same dynamic sys-
tem at different length scales.We emphasize that this stable hierarchical
hyperuniform fluid is conceptually different from the disordered hyper-
uniform solid or critical hyperuniform state. From a practical point of
view, our results suggest that even for exotic disordered hyperuniform
structures, there is still plenty of room at the “bottom,” i.e., one may
construct arbitrary local complex structures (ordered or disordered)
with extra functionalities without harming the global hyperuniformity.
This provides large freedom in designing hierarchical disordered hyper-
uniform materials with unconventional properties.
Fig. 5. Effect of thermal noises on hyperuniformity. (A) Structure factor So(q)
under different reduced noise strength TR for f = 0.2 and R = 3s. Open symbols
show the simulation data, while the dashed lines are the theoretical predictions of
Eq. 16. (B) Normalized So(0) as functions of TR from theoretical prediction (dashed
line) and the fitting of simulation results (solid symbols) for systems with f = 0.2. For
all the calculations, n = 40,000.
7 of 9
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METHODS
In our simulations, we used a square simulation box with periodic
boundary conditions in all directions, starting from initial configurations
with random particle positions and orientations tomake sure the initial
structure factor S(q) ~ 1. The time unit was chosen to be the time that a
particlemoves a distance of s in the dilute limit, i.e., t0 = s/v0. Tomimic
the excluded volume interaction between colloidal particles i and j, we
used the WCA potential

UðrijÞ ¼ 4ε
σ

rij

� �12

−
σ

rij

� �6

þ 1
4

" #
ðrij < 21=6σÞ

0 ðrij > 21=6σÞ

8><
>: ð17Þ

where rij is the center to center distance between particles i and j, with s
as the diameter of particles. We chose e = Fps/24, which gives the typ-
ical contact distance rc = s between particles based on force balance
Fp ¼ ∂UðrijÞ

∂rij
jrij¼rc. For systems at TR = 0, to exclude the noise generated

by discrete dynamic integrations, we used perfect convex polygons to
approximate the closed circle trajectories of active particles. This is rea-
lized by finely tuning the integration step, which is around 10−3t0.

For systems with bimodal distributed circling-phase, following
(26), we added an additional soft repulsion Us = A (r/s)−4 with
cutoff distance rsc = 5s and A = 7.5e to model the isotropic dipole
interaction between active particles. The self-propulsion force for
this system was reset to Fp = 27/6A/s to make the dipolar interac-
tion balance the driving force at rc = 21/6s (26).

The density variance 〈dr2〉 of the system was calculated using a
spherical window whose diameter is smaller than the half of simulation
box to avoid the finite-size effect. Under the periodic boundary condi-
tion, the structure factor S(q) was calculated for some discrete q vectors,
i.e., ½qx; qy� ¼ 2p

L0
½i; j�ði; j ¼ 1; 2; 3…Þ , with L0 as the size of cubic

simulation box. The simulation time for the equilibrating and sampling
processes depends on the system size and density. For hyperuniform
system, the criterion for the system to reach equilibrium is whether
the hyperuniform scaling of S(q) has fully extended to the smallest
qmin = 2p/L0 without further change. The fitting function used in Fig.
5B is Eq. 16, with an adjustable TR.
 2019
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