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growth direction using the slow-deposition molecular beam epitaxy
technique (see the Supplementary Materials).

RESULTS

We first address the dual magnetic states observed in the global-
doped sample, i.e., 10-nm 3% Cr-doped Bi,Se; epitaxial thin films.
Figure 2 (A to G) present the measured total XAS and the XMCD
spectra at the Cr L, 3 edge of the global-doped Bi,Sej; thin film ob-
tained in the total electron yield (TEY) mode (see the Supplementary
Materials). The total XAS of Cr shows remarkable multiplet struc-
tures separated by 1.2 eV at both spin-orbit split core levels, sug-
gesting a mixture of divalent and trivalent Cr. Atomic multiplet
calculations were performed to simulate the electric-dipole transi-
tions, i.e., 3d" — 2p°3d" !, to deconvolute the hybridized spectra
(see the Supplementary Materials) (29, 30). The best fit was ob-
tained by a linear superposition of covalent Cr d°”° (divalent) and
d*7 (trivalent) with ~1:3 for the total XAS, while this ratio is ~1:3 at
3 K and goes all the way up to ~1:1.5 at 80 K for the XMCD spectra.
This suggests that, compared to the Cr d>7°, the Cr d*”° loses mag-
netic ordering significantly faster with increasing temperature. The
branching ratio (31), which quantifies the relative intensity of the L3
edge in the total L, 3 XAS intensity of the hybrid Cr L, 3 XAS spectra,

is 0.63, standing in between 0.61 for d*”° and 0.68 for d>”° for the
octahedral crystal-field symmetry.

Qualitatively, the contribution of the surface can be identified by
comparing the spectra obtained in the bulk-sensitive total fluores-
cence yield (TFY) detection with that in the surface-sensitive TEY
detection. While TEY at normal incidence probes only the top
~5 nm near the surface, TFY has a penetration depth of more than
100 nm (31, 32). In the global-doped Bi,Se; thin film, the low-energy
peak (d79) is notably absent in the TFY spectrum, indicating that
this peak originates from the top few atomic layers of the sample.
First-principles density functional theory simulations confirm that
this d°7° state is unlikely coming from any form of defects within
Cr-doped Bi,Se; (33). Note that the TEY intensity is attenuated by
an exponentially decaying electron-escape probability. Therefore, in
the total TEY-XAS spectra, the ratio of the Cr d*”® to Cr d*”° shows
~1:3 other than an unweighted sum of ~1:9 that one may tentatively
assume.

We now have a picture that the two deconvoluted Cr d*”° and
Cr d*” spectra uniquely represent the surface and the bulk properties
of the Bi, ,Cr,Ses; and denote them as dqu¢® and dyun”?, respec-
tively, hereafter. Figure 3 (A and B, respectively) presents the total
XAS and XMCD spectra of the modulation-doped Bi,Se; thin films
with an effective doping of 1.2% from 3 to 80 K. The deconvolution
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Fig. 3. The modulation-doped Bi,Ses. Typical total XAS and XMCD and their deconvoluted spectra of the (A) surf-doped and (B) mid-doped Bi,Se; at 3 to 80K, respec-
tively. For the surf-doped Bi,Se;, the best fitting was obtained by a linear superposition of dsurf3'70 and dbu|k2‘79, with ~4:5 for the total XAS and ~2:1 for the XMCD. No ap-

preciable Cr dsur?’° but only Cr dpu’”® was obtained from the mid-doped Bi,Ses.
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of the total XAS gives the ratio of ~4:5 for the contribution of the
Cr dyye””® and the Cr dpy>”° for the surf-doped sample, whereas no
appreciable Cr dewrt”° but only Cr dpui>” was observed from the
mid-doped sample Note that even the surf-doped Bi,Se; contains
both Cr d,e”° and Cr dyui>”® with the later arising from the lower
atomic sublayers of the first QL (see Fig. 1B). This is consistent with
that observed for the global-doped sample.

Figure 4 presents the XMCD-derived spin (spin) and orbital (7101,
magnetic moments versus temperature of the global- and the modulation-
doped Bi,Se;, respectively, by applying sum rules to the separate XAS
and XMCD spectra (see the Supplementary Materials). The XMCD-
derived mgpin and oy, of both the Cr dewrt”° and Cr dpgi” have
opposite signs, corresponding to antiparallel alignment of the spin and
orbital magnetization. This agrees with the Hund’s rule for Cr, whose
3d shell is less than half full. For the global-doped Bi,Ses, we obtained
a remarkable mg;, = (3.44 £+ 0.30) uB/atom and a small negative
Morb = ( 0.06 + 0.03) ug/atom for the Cr dq.,¢”°, while those for the
Cr dyui’”? are mgn = (165 + 0.30) pp/atom and o, = (~0.09 £ 0.03) up/Cr
at 3 K. For the modulation-doped Bi,Ses, the magnetization is slightly
suppressed because of the reduced thickness of the doped region. We
obtained #1pin = (2 49 +0.25) up/atom and mqy, = (—0.04 + 0.02) uB/ atom
for the Cr dqy,"° of the surf- doped Bi,Ses. For the Cr Ao, the
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Fig. 4. M-T relationships. (Top)The XAS/XMCD-derived mspin and mo, of the
dsur?”® and dpy’® versus temperature (T) at 3 to 80K of the modulation-doped
Bi,Se; thin films. The dashed lines are the best fit within the mean-field approxima-
tion. (Bottom) Schematic illustration of the three-step transition: Both the surface
and bulk are magnetically ordered below T, (phase I); between T. and T/, the sur-
face retains magnetization while the bulk does not anymore (phase Il); eventually,

beyond T/, both the surface and bulk lose their magnetic orders (phase ll).
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magnetic moments extracted from the surf- and the mid-doped
Bi,Se; are identical within the experimental accuracy, namely,
Mgpin = (1.30 £ 0.10) pp/atom and #1o., = (=0.14 + 0.02) pp/atom for the
former and Mgy, = (1.34 +0.10) pp/atom and e, = (0.15 +0 02) Up/atom
for the latter, respectively. While m,y, of the Cr dpai” for all the
three samples is notably large, that of the Cr e " is nearly quenched,
which may be attributed to a slight distortion of the lattice sym-
metry of the surface.

DISCUSSION

In line with the electrical magnetotransport measurements (33), the
XMCD-derived mgpin exhibits a Curie-like behavior, pointing to a
ferromagnetic phase of the Bi,_ xCrxSe3 thin film at low temperatures.
The fact that the mgy, of the Cr dewrt”° and the Cr dp>7° of the
global-doped Bi,Se; show distinct temperature dependences points
to the presence of dual magnetic states processing within one sample.
As shown in Fig. 4, the Cr dsurt” exhibits more robust magnetiza-
tion in both the magnitude of moment and the ordering temperature
in comparison to that of the Cr Ao Fitting the temperature-
dependent magnetization within the mean-field approximation,
i.e., M(T) < (1 - T/T.)", where y represents the critical exponent, we
obtained T = (31.0 + 3.2) K and (31.3 £ 2.9) K for the Cr dyui””” in
the surf- and the mid-doped Bi,_,Cr,Ses, respectively, and T." =
(46.4 + 2.5) K for the Cr dgy° in the surf-doped Bi,_,Cr,Ses.
Table 1 summarizes the XMCD-derived mg, T, and y of the
modulation-doped Bi,Se; thin films.

Keeping in mind that the Cr o>’ and Cr dgyf”° correspond to
the two respective magnetization modes of the bulk and the surface,
we conclude a “three-step-transition” model for the magnetic TIs
against temperature. As illustrated in the upper row of Fig. 4: During
phase I, both the surface and bulk are magnetically ordered below
T,; between T and T.' (phase II), the surface retains magnetization
while the bulk does not any longer; eventually, above T." (phase III),
both the surface and the bulk lose their magnetic ordering. Note that,
because electrical measurements are sensitive to the bulk, the transport-
derived magnetically ordered temperatures (33) have a different phys-
ical meaning as those obtained using dichroic spectra and are rather
close to the T. of the Cr dyyi>”°. It is known that, in diluted magnetic
semiconductors, ferromagnetic ordering is set via carrier-mediated
exchange, which depends on the carrier concentration and, in turn, on
the magnetic dopant concentration (34). The high density of free
carriers required in these systems, however, is unsuitable for TIs (33).
Theoretical predictions (17) indicate that the surface state-mediated
spin-spin interaction is naturally ferromagnetic and even the bulk TI
remains paramagnetic; experiments confirm that, in the magnetically
doped Bi,Se; systems, the Dirac gap in the surface spectrum can be
present without bulk magnetic ordering (8, 9). A sharp transition of
the magnetic susceptibility at the surface of TIs has been predicted

Table 1. Summary of the XMCD-derived my, T, and y of the
modulation-doped Bi,Sej; thin films.

Sample Crdopants  m (ug/atom) T (K) %
dsurt"° 249£025 46425  040+0.14

Surf-doped T s
dpui 1.30£0.10 31o+32 0.29+0.17

Mid-doped dpui>”® 1.34+0.10 313229  058+0.10
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(35) and demonstrated in experiment (25). Calculation (19) of the
surface magnetic ordering of TIs has estimated values of 17.5 and
29 K, depending on the lattice model selected, for this temperature
“window.” This estimate compares well with our observation.

To conclude, we have defined and validated an experiential
approach to determine the magnetic ground state in a “surface-
specific’ manner using synchrotron-based x-ray techniques. We
have unambiguously observed an enhanced surface magnetic or-
dering of the Bi,_,Cr,Ses systems with a significantly large sur-
face magnetic moment and high ordering temperature. We have
demonstrated a three-step-transition model, in which a tempera-
ture window of ~15 K exists where the surface of the TI is mag-
netically ordered but the bulk is not. Future work to explore the
tuning of this window and understand the dual magnetization
process will have strong relevance to refining the physical model of
magnetic TIs and lays the foundation for applications to emerg-
ing spintronic technologies.

MATERIALS AND METHODS

XAS and XMCD measurements at the Cr L, 3 absorption edges of
the Bi,_,Cr,Ses/Si(111) thin film were performed on beamline 110
at Diamond Light Source, UK. Circularly polarized x-rays with
~100% polarization were used in normal incidence with respect to
the sample plane and parallel to the applied magnetic field, as illus-
trated in Fig. 2H. The XMCD was obtained by taking the difference
of the XAS spectra, i.e., 6" — ¢, by flipping the x-ray helicity at a
fixed magnetic field of 30 kOe. The total XAS, on the other hand,
was obtained by averaging over the two polarizations, i.e., (¢* +067)/2.
The intensity and the detailed line shape of the total XAS spectra
reveal information of the Cr impurities in different valance states,
while those of the XMCD spectra indicate the corresponding mag-
netic ground states. Atomic multiplet theory was used to calculate
the electric-dipole transitions 3d” — 2p°3d" " !, where the spin-orbit
and electrostatic interactions were treated on an equal footing (36).
The wave functions of the initial- and final-state configurations were
calculated in intermediate coupling using the Cowan’s atomic Hartree-
Fock (HF) code with relativistic corrections. The atomic electrostatic
interactions include the 2p-3d and 3d-3d Coulomb and exchange
interactions, which are reduced to 70% of their atomic HF value to
account for the intra-atomic screenin§ (36). Hybridization effects were
included by mixing 3d" with 3d" * 'L configurations, where L rep-
resents a hole on the neighboring atoms in states of appropriate
symmetry. The Cr L3 (L) line spectra were broadened by a Lorentzian
with a half width at half maximum of "= 0.3 eV (0.4 eV) for intrinsic
lifetime broadening and a Gaussian with an SD of ¢ = 0.15 eV for
instrumental broadening.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/2/eaav2088/DC1

Section S1. Sample preparation

Section 52. XAS/XMCD measurement

Section S3. Multiplet calculations

Section S4. Sum-rules analysis

Fig. S1. Schematic diagram of the experimental setup for XAS and XMCD measurement.
Fig. S2. Deconvolution of the mixed Cr valences.

Fig. S3. The sum-rules analysis.

Table S1. Summary of the XMCD-derived mqpin for the global-, surf-, and mid-doped Cr-doped
Bi,Ses, respectively, at 3K.
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