Science Advances

Supplementary Materials

This PDF file includes:

  • Fig. S1. XRD patterns of the LLZTO composite separator (orange), LLZTO powder (cyan), and the powder diffraction file (PDF) of Li5La2Nb2O12.
  • Fig. S2. TEM images of the LLZTO ceramic powders.
  • Fig. S3. SEM image for the surface of commercial PP separator (Celgard 2400).
  • Fig. S4. TGA curves of routine PP separator (cyan) and LLZTO composite separator (orange) in nitrogen or oxygen atmosphere.
  • Fig. S5. FEM models for the routine PP separator (without LLZTO layer) and the composite separator (with LLZTO layer).
  • Fig. S6. The relative concentration of Li ions beneath the routine PP separator (cyan line) and the composite separator (orange line) at y = 9.0 μm in the FEM simulation results ( Fig. 3, A and B).
  • Fig. S7. Schematic illustration of the electrolytic cells designed for electrochemical deposition to avoid the effect of stress.
  • Fig. S8. Schematic illustration of the coin cells designed for electrochemical deposition to avoid the effect of stress and maintain the close contact between LLZTO ion redistributors and electrodes.
  • Fig. S9. SEM images of Li metal deposits in coin cells with PTFE circle.
  • Fig. S10. Charge and discharge voltage profiles of Li | Cu cells.
  • Fig. S11. Voltage profiles for Li | Li symmetric cells using carbonate-based EC/DEC electrolytes at a current density of 0.5 mA cm−2.
  • Fig. S12. Voltage profiles for Li | Li symmetric cells using ether-based DOL/DME electrolytes at a current density of 0.5 mA cm−2.
  • Fig. S13. Impedance spectra of Li | Li cells.
  • Fig. S14. SEM images of Li metal electrodes in Li | Li symmetric cells.
  • Fig. S15. XPS survey of LLZTO layer on composite separators.
  • Fig. S16. XPS spectra of LLZTO layer on composite separators.
  • Fig. S17. Morphological characterizations of the LLZTO composite separator after cycling.
  • Fig. S18. XPS spectra of the deposited Li metal anode surface with the LLZTO composite separator in DOL/DME electrolytes.
  • Fig. S19. XPS spectra of the deposited Li metal anode surface with the routine PP separator in DOL/DME electrolytes.
  • Fig. S20. Voltage hysteresis of Li | Li pouch cells with EC/DEC electrolytes at a current density of 0.25 mA cm−2.
  • Fig. S21. Morphology and cycling performances of the separator with PAN layer of lower ionic conductivity compared with the LLZTO composite separator of the LLZTO film.
  • Fig. S22. Morphology of the composite separator with Al2O3 layer.
  • Fig. S23. Cycling performances of the composite separator with Al2O3 and LLZTO coating layer.
  • Fig. S24. Cycling performances of the composite separator with Al2O3 layer and LLZTO coating layers.
  • Fig. S25. Electrochemical impedances of Li | Li symmetrical cells in EC/DEC electrolytes at 1.0 mA cm−2.
  • Fig. S26. Ion transportation behaviors in the composite separator with a LLZTO ion conductive layer and a Li-ion insulator layer when limited liquid electrolytes are adopted.
  • Fig. S27. Atomic force microscopy analysis of the LLZTO composite separator and the Al2O3 composite separator.
  • Fig. S28. Morphology and cycling performances of the separator with a thicker LLZTO film (30 μm) to redistribute Li ions compared with the LLZTO composite separator of the 5-μm LLZTO film.
  • Fig. S29. Morphology and cycling performances of the separator with isolated LLZTO particles compared with the LLZTO composite separator of the 5-μm LLZTO film.
  • Table S1. Statistics of the concentration of Li ions beneath the routine PP separator and the composite separator at y = 9.0 μm.
  • Table S2. Element atomic percentage of Li metal anode surface with the LLZTO composite separator and the routine PP separator obtained from XPS spectra.

Download PDF

Files in this Data Supplement: