RT Journal Article SR Electronic T1 Sampling molecular conformations and dynamics in a multiuser virtual reality framework JF Science Advances JO Sci Adv FD American Association for the Advancement of Science SP eaat2731 DO 10.1126/sciadv.aat2731 VO 4 IS 6 A1 O’Connor, Michael A1 Deeks, Helen M. A1 Dawn, Edward A1 Metatla, Oussama A1 Roudaut, Anne A1 Sutton, Matthew A1 Thomas, Lisa May A1 Glowacki, Becca Rose A1 Sage, Rebecca A1 Tew, Philip A1 Wonnacott, Mark A1 Bates, Phil A1 Mulholland, Adrian J. A1 Glowacki, David R. YR 2018 UL http://advances.sciencemag.org/content/4/6/eaat2731.abstract AB We describe a framework for interactive molecular dynamics in a multiuser virtual reality (VR) environment, combining rigorous cloud-mounted atomistic physics simulations with commodity VR hardware, which we have made accessible to readers (see isci.itch.io/nsb-imd). It allows users to visualize and sample, with atomic-level precision, the structures and dynamics of complex molecular structures “on the fly” and to interact with other users in the same virtual environment. A series of controlled studies, in which participants were tasked with a range of molecular manipulation goals (threading methane through a nanotube, changing helical screw sense, and tying a protein knot), quantitatively demonstrate that users within the interactive VR environment can complete sophisticated molecular modeling tasks more quickly than they can using conventional interfaces, especially for molecular pathways and structural transitions whose conformational choreographies are intrinsically three-dimensional. This framework should accelerate progress in nanoscale molecular engineering areas including conformational mapping, drug development, synthetic biology, and catalyst design. More broadly, our findings highlight the potential of VR in scientific domains where three-dimensional dynamics matter, spanning research and education.