Research ArticleELECTROCHEMISTRY

A universal cooperative assembly-directed method for coating of mesoporous TiO2 nanoshells with enhanced lithium storage properties

See allHide authors and affiliations

Science Advances  04 Mar 2016:
Vol. 2, no. 3, e1501554
DOI: 10.1126/sciadv.1501554
  • Fig. 1 Schematic illustration of the synthesis procedure for mesostructured TiO2 shells.
  • Fig. 2 TEM characterizations of SiO2@TiO2/HDA core-shell spheres and SiO2@aTiO2 yolk-shell spheres.

    (A) SiO2 template spheres. (B) SiO2@TiO2/HDA core-shell spheres. (C and D) SiO2@aTiO2 yolk-shell spheres.

  • Fig. 3 TEM characterizations of mesoporous aTiO2 hollow spheres.

    (A to C) aTiO2 hollow spheres with identical hollow core size of about 230 nm but varied shell thicknesses: 8 nm (A), 41 nm (B), and 54 nm (C). (D to F) aTiO2 hollow spheres with average diameter (core size) of 300 (270) nm (D), 410 (325) nm (E), and 680 (475) nm (F).

  • Fig. 4 FESEM and TEM characterizations of mesoporous cTiO2 hollow spheres.

    (A and B) FESEM (A) and TEM images (B) of cTiO2 hollow nanospheres. (C and D) Magnified TEM images show an individual cTiO2 hollow nanosphere (C) and the mesoporous shell (D). (E) HRTEM image of the cTiO2 shell. (F) Corresponding SAED pattern of cTiO2 hollow nanospheres.

  • Fig. 5 TEM characterizations of TiO2 yolk-shell and double-shell hollow structures and nanocomposites.

    (A) Au@TiO2 yolk-shell nanospheres. (B) Fe2O3@TiO2 yolk-shell cubes. (C) TiO2-polymer double-shell nanospheres. (D) MSN@TiO2 core-shell nanospheres. (E) PN@TiO2 core-shell nanospheres. (F) GO@TiO2 composite nanosheets. (G) CN@TiO2 core-shell nanospheres. (H) MOF@TiO2 core-shell particles.

  • Fig. 6 Electrochemical characterizations of cTiO2 hollow spheres as an anode material in LIBs.

    (A) Discharge-charge voltage profiles in the voltage range from 1.0 to 3.0 V at a current rate of 10 C. (B) Cycling performance and corresponding coulombic efficiency at a current rate of 10 C. (C) Rate performance at various current rates from 1 to 30 C. 1 C = 173 mA g−1.

Supplementary Materials

  • Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/2/3/e1501554/DC1

    Fig. S1. FESEM characterizations of SiO2@TiO2/HDA core-shell spheres and SiO2@aTiO2 yolk-shell spheres.

    Fig. S2. DLS analysis of SiO2 templates and SiO2@TiO2/HDA spheres.

    Fig. S3. Small-angle XRD analysis of the particles with mesostructured TiO2 shells.

    Fig. S4. FTIR study on the interactions between TiO2 and HDA.

    Fig. S5. Wide-angle XRD analysis of the particles with aTiO2 shells.

    Fig. S6. N2 sorption analysis of SiO2@aTiO2 and SiO2@TiO2/HDA samples.

    Fig. S7. FTIR study of surfactant removal.

    Fig. S8. TEM characterizations of SiO2@TiO2/HDA spheres and aTiO2 hollow spheres.

    Fig. S9. N2 sorption analysis of aTiO2 hollow spheres.

    Fig. S10. FESEM characterizations of mesoporous aTiO2 hollow spheres.

    Fig. S11. TEM characterizations of SiO2@cTiO2 spheres.

    Fig. S12. FTIR and N2 sorption analysis of SiO2@cTiO2 spheres.

    Fig. S13. Wide-angle XRD analysis of the particles with cTiO2 shells.

    Fig. S14. N2 sorption analysis of cTiO2 hollow spheres.

    Fig. S15. Elemental analysis of cTiO2 hollow spheres.

    Fig. S16. TEM and XRD characterizations of SiO2@TiO2/HDA spheres treated with 0.1 M HCl and 0.1 M NaOH solutions.

    Fig. S17. TEM characterizations of the formation process of Au@TiO2 yolk-shell spheres.

    Fig. S18. FESEM and TEM characterizations of the formation process of Fe2O3@TiO2 yolk-shell particles.

    Fig. S19. FESEM and TEM characterizations of the formation process of TiO2-polymer double-shell hollow spheres.

    Fig. S20. FESEM characterizations of different TiO2 core-shell composites.

    Fig. S21. FESEM characterizations of CN and MOF templates.

    Fig. S22. Wide-angle XRD analysis of different functional cores.

    Fig. S23. TEM characterizations of CNT@TiO2 nanofibers.

    Fig. S24. TEM characterizations and small-angle XRD analysis of different TiO2 core-shell composites.

    Fig. S25. Cyclic voltammetry characterization of cTiO2 hollow spheres.

    Fig. S26. Electrochemical characterizations of cTiO2 hollow spheres as an anode material in LIBs.

    Fig. S27. FESEM characterization of cTiO2 hollow spheres before and after cycling test.

  • Supplementary Materials

    This PDF file includes:

    • Fig. S1. FESEM characterizations of SiO2@TiO2/HDA core-shell spheres and SiO2@aTiO2 yolk-shell spheres.
    • Fig. S2. DLS analysis of SiO2 templates and SiO2@TiO2/HDA spheres.
    • Fig. S3. Small-angle XRD analysis of the particles with mesostructured TiO2 shells.
    • Fig. S4. FTIR study on the interactions between TiO2 and HDA.
    • Fig. S5. Wide-angle XRD analysis of the particles with aTiO2 shells.
    • Fig. S6. N2 sorption analysis of SiO2@aTiO2 and SiO2@TiO2/HDA samples.
    • Fig. S7. FTIR study of surfactant removal.
    • Fig. S8. TEM characterizations of SiO2@TiO2/HDA spheres and aTiO2 hollow spheres.
    • Fig. S9. N2 sorption analysis of aTiO2 hollow spheres.
    • Fig. S10. FESEM characterizations of mesoporous aTiO2 hollow spheres.
    • Fig. S11. TEM characterizations of SiO2@cTiO2 spheres.
    • Fig. S12. FTIR and N2 sorption analysis of SiO2@cTiO2 spheres.
    • Fig. S13. Wide-angle XRD analysis of the particles with cTiO2 shells.
    • Fig. S14. N2 sorption analysis of cTiO2 hollow spheres.
    • Fig. S15. Elemental analysis of cTiO2 hollow spheres.
    • Fig. S16. TEM and XRD characterizations of SiO2@TiO2/HDA spheres treated with 0.1 M HCl and 0.1 M NaOH solutions.
    • Fig. S17. TEM characterizations of the formation process of Au@TiO2 yolk-shell spheres.
    • Fig. S18. FESEM and TEM characterizations of the formation process of Fe2O3@TiO2 yolk-shell particles.
    • Fig. S19. FESEM and TEM characterizations of the formation process of TiO2-polymer double-shell hollow spheres.
    • Fig. S20. FESEM characterizations of different TiO2 core-shell composites.
    • Fig. S21. FESEM characterizations of CN and MOF templates.
    • Fig. S22. Wide-angle XRD analysis of different functional cores.
    • Fig. S23. TEM characterizations of CNT@TiO2 nanofibers.
    • Fig. S24. TEM characterizations and small-angle XRD analysis of different TiO2 core-shell composites.
    • Fig. S25. Cyclic voltammetry characterization of cTiO2 hollow spheres.
    • Fig. S26. Electrochemical characterizations of cTiO2 hollow spheres as an anode material in LIBs.
    • Fig. S27. FESEM characterization of cTiO2 hollow spheres before and after cycling test.

    Download PDF

    Files in this Data Supplement:

Navigate This Article