Tailor-made temperature-dependent thermal conductivity via interparticle constriction

See allHide authors and affiliations

Science Advances  17 Nov 2017:
Vol. 3, no. 11, eaao5238
DOI: 10.1126/sciadv.aao5238


Managing heat is a major challenge to meet future demands for a sustainable use of our energy resources. This requires materials, which can be custom-designed to exhibit specific temperature-dependent thermal transport properties to become integrated into thermal switches, transistors, or diodes. Common crystalline and amorphous materials are not suitable, owing to their gradual changes of the temperature-dependent thermal conductivity. We show how a second-order phase transition fully controls the temperature-dependent thermal transport properties of polymer materials. We demonstrate four major concepts based on a colloidal superstructure: (i) control of transition temperature, (ii) width of phase transition regime, (iii) multistep transitions, and (iv) step height of the transition. Most importantly, this unique control over thermal conductivity is only governed by the interparticle constriction, the particle composition, and its mesostructure. Our concept is therefore also applicable to a wide variety of other particulate materials.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances