Elastic and electronic tuning of magnetoresistance in MoTe2

See allHide authors and affiliations

Science Advances  15 Dec 2017:
Vol. 3, no. 12, eaao4949
DOI: 10.1126/sciadv.aao4949


Quasi–two-dimensional transition metal dichalcogenides exhibit dramatic properties that may transform electronic and photonic devices. We report on how the anomalously large magnetoresistance (MR) observed under high magnetic field in MoTe2, a type II Weyl semimetal, can be reversibly controlled under tensile strain. The MR is enhanced by as much as ~30% at low temperatures and high magnetic fields when uniaxial strain is applied along the a crystallographic direction and reduced by about the same amount when strain is applied along the b direction. We show that the large in-plane electric anisotropy is coupled with the structural transition from the 1T′ monoclinic to the Td orthorhombic Weyl phase. A shift of the Td-1T′ phase boundary is achieved by minimal tensile strain. The sensitivity of the MR to tensile strain suggests the possibility of a nontrivial spin-orbital texture of the electron and hole pockets in the vicinity of Weyl points. Our ab initio calculations show a significant orbital mixing on the Fermi surface, which is modified by the tensile strains.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances