Bulk layered heterojunction as an efficient electrocatalyst for hydrogen evolution

See allHide authors and affiliations

Science Advances  31 Mar 2017:
Vol. 3, no. 3, e1602215
DOI: 10.1126/sciadv.1602215


We describe the spontaneous formation of composite chalcogenide materials that consist of two-dimensional (2D) materials dispersed in bulk and their unusual charge transport properties for application in hydrogen evolution reactions (HERs). When MoS2 as a representative 2D material is deposited on transition metals (such as Cu) in a controlled manner, the sulfidation reactions also occur with the metal. This process results in remarkably unique structures, that is, bulk layered heterojunctions (BLHJs) of Cu–Mo–S that contain MoS2 flakes inside, which are uniformly dispersed in the Cu2S matrix. The resulting structures were expected to induce asymmetric charge transfer via layered frameworks and tested as electrocatalysts for HERs. Upon suitable thermal treatments, the BLHJ surfaces exhibited the efficient HER performance of approximately 10 mA/cm2 at a potential of −0.1 V versus a reversible hydrogen electrode. The Tafel slope was approximately 30 to 40 mV per decade. The present strategy was further generalized by demonstrating the formation of BLHJs on other transition metals, such as Ni. The resulting BLHJs of Ni–Mo–S also showed the remarkable HER performance and the stable operation over 10 days without using Pt counter electrodes by eliminating any possible issues on the Pt contamination.

  • Electrocatalyst
  • Hydrogen Evolution Reaction
  • bulk layered heterojuntion
  • composite chalcogenide materials
  • Cu-Mo-S
  • sequential gas phase deposition

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances