Research ArticleAPPLIED SCIENCES AND ENGINEERING

Layered microporous polymers by solvent knitting method

See allHide authors and affiliations

Science Advances  31 Mar 2017:
Vol. 3, no. 3, e1602610
DOI: 10.1126/sciadv.1602610
  • Scheme 1 Synthesis of polymers and building block structures and layered modeled structure of polymers.

    (A) The synthetic pathway to produce the network structure. (B) Molecular structures of the building blocks for the network. (C) The layered model of benzene-based polymer.

  • Fig. 1 NMR spectra of polymers.

    13C CP/MAS NMR spectra of polymers. Asterisks denote spinning sidebands.

  • Fig. 2 HR-TEM data of SHCP-3, SHCP-6, and polymer 3.

    The HR-TEM images of SHCP-3 (A and B), SHCP-6 (C and D), and polymer 3 (E and F) [knitted by formaldehyde dimethyl acetal (FDA) as external cross-linker] at different scale bars.

  • Fig. 3 AFM data of SHCP-3 and SHCP-6 nanosheets.

    (A and B) The AFM images and height analysis of SHCP-3 nanosheets on silicon wafer. (C and D) The AFM images and height analysis of SHCP-6 nanosheets on mica wafer.

  • Fig. 4 Porosity data of polymers.

    (A and C) Nitrogen adsorption and desorption isotherms at 77.3 K. (B and D) Pore distribution of pore size distribution calculated using density functional theory (DFT) methods (slit pore models and differential pore volumes). Pore width of polymers. STP, standard temperature and pressure.

  • Fig. 5 Gas uptake data of polymers.

    (A) Volumetric CO2 adsorption and desorption isotherms up to 1.00 bar at 273.15 K, (B) volumetric CO2 adsorption and desorption isotherms up to 1.00 bar at 298.15 K, and (C) volumetric H2 adsorption and desorption isotherms up to 1.13 bar at 77.3 K of polymers. wt %, weight percent.

  • Table 1 Composition and porosity of the polymers.
    NumberMonomerSolventSBET (m2 g−1)*SL (m2 g−1)Pore volume (cm3 g−1)MPV (cm3 g−1)§
    SHCP-1BenzeneDCM5757690.320.15
    SHCP-2BiphenylDCM147519440.790.43
    SHCP-3TPBDCM180824071.080.48
    SHCP-4BenzeneDCE7319810.800.16
    SHCP-5BiphenylDCE5367240.350.12
    SHCP-6TPBDCE93512810.880.15
    SHCP-3a||TPBDCM252534802.100.43
    SHCP-3bTPBDCM300238962.330.42

    *Surface area calculated from nitrogen adsorption isotherms at 77.3 K using the BET equation.

    †Surface area calculated from nitrogen adsorption at 77.3 K using the Langmuir equation.

    ‡Pore volume calculated from nitrogen isotherm at 77.3 K and P/P0 = 0.995.

    §Micropore volume calculated from the nitrogen isotherm at P/P0 = 0.050.

    ||The amount of Lewis acid is 12 molar ratio to TPB.

    ¶The amount of Lewis acid is 24 molar ratio to TPB.

    • Table 2 Gas adsorption of the polymers.
      NumberMonomerSolventH2 uptake (mmol g−1; wt %)*CO2 uptake (mmol g−1; wt %)CO2 uptake (mmol g−1; wt %)
      SHCP-1BenzeneDCM4.80 (0.96)1.95 (8.6)1.14 (5.0)
      SHCP-2BiphenylDCM10.55 (2.11)4.64 (20.4)2.77 (12.2)
      SHCP-3TPBDCM10.70 (2.14)4.84 (21.3)2.64 (11.6)
      SHCP-3aTPBDCM11.80 (2.36)4.75 (20.9)2.52 (11.1)
      SHCP-3bTPBDCM12.40 (2.48)4.82 (21.2)2.57 (11.3)
      SHCP-4BenzeneDCE5.90 (1.18)2.11 (9.3)1.23 (5.4)
      SHCP-5BiphenylDCE4.40 (0.88)2.02 (8.9)1.18 (5.2)
      SHCP-6TPBDCE6.30 (1.26)2.43 (10.7)1.43 (6.3)

      *H2 uptake determined volumetrically using a Micromeritics ASAP 2020 M analyzer at 1.13 bar and 77.3 K.

      †CO2 uptake determined volumetrically using a Micromeritics ASAP 2020 M analyzer at 1.00 bar and 273.15 K.

      ‡CO2 uptake determined volumetrically using a Micromeritics ASAP 2020 M analyzer at 1.00 bar and 298.15 K.

      Supplementary Materials

      • Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/3/3/e1602610/DC1

        fig. S1. FTIR spectrum of SHCP-1.

        fig. S2. FTIR spectrum of SHCP-2.

        fig. S3. FTIR spectrum of SHCP-3.

        fig. S4. FTIR spectrum of SHCP-3a.

        fig. S5. FTIR spectrum of SHCP-4.

        fig. S6. FTIR spectrum of SHCP-5.

        fig. S7. FTIR spectrum of SHCP-6.

        fig. S8. 13C CP/MAS NMR spectrum of SHCP-1.

        fig. S9. 13C CP/MAS NMR spectrum of SHCP-2.

        fig. S10. 13C CP/MAS NMR spectrum of SHCP-3.

        fig. S11. 13C CP/MAS NMR spectrum of SHCP-3a.

        fig. S12. 13C CP/MAS NMR spectrum of SHCP-4.

        fig. S13. 13C CP/MAS NMR spectrum of SHCP-5.

        fig. S14. 13C CP/MAS NMR spectrum of SHCP-6.

        fig. S15. 1H NMR spectrum of dimer for SHCP-3 at 30°C (CDCl3 as solvent).

        fig. S16. 13C NMR spectrum of dimer for SHCP-3 at 30°C (CDCl3 as solvent).

        fig. S17. Thermogravimetric analysis of polymers.

        fig. S18. SEM and TEM images of SHCP-1.

        fig. S19. SEM and TEM images of SHCP-2.

        fig. S20. SEM and TEM images of SHCP-3.

        fig. S21. SEM and TEM images of SHCP-3a.

        fig. S22. SEM and TEM images of SHCP-4.

        fig. S23. SEM and TEM images of SHCP-5.

        fig. S24. SEM and TEM images of SHCP-6.

        fig. S25. PXRD images of SHCP-1 and SHCP-2.

        fig. S26. PXRD images of SHCP-3 and SHCP-4.

        fig. S27. PXRD images of SHCP-5 and SHCP-6.

        fig. S28. PXRD image of polymer 3 (knitting by FDA as external cross-linker).

        fig. S29. STEM images of SHCP-3, SHCP-6, and polymer 3.

        fig. S30. Schematic representation of the three model TPB oligomers consisting of seven TPB units knitted by methylene.

        fig. S31. Atomistic models for amorphous packings of the TPB oligomers.

        fig. S32. Atomistic models for crystalline packing of the TPB molecules.

        fig. S33. HR-TEM images of SHCP-3 nanosheets.

        fig. S34. AFM data of SHCP-3 and SHCP-6 nanosheets.

        table S1. The FTIR characteristic peak data of polymers.

        table S2. The effect of molar ratio AlCl3 on the surface area and yield of polymers.

        table S3. The effect of solvent and monomers on the pore size of polymers.

      • Supplementary Materials

        This PDF file includes:

        • fig. S1. FTIR spectrum of SHCP-1.
        • fig. S2. FTIR spectrum of SHCP-2.
        • fig. S3. FTIR spectrum of SHCP-3.
        • fig. S4. FTIR spectrum of SHCP-3a.
        • fig. S5. FTIR spectrum of SHCP-4.
        • fig. S6. FTIR spectrum of SHCP-5.
        • fig. S7. FTIR spectrum of SHCP-6.
        • fig. S8. 13C CP/MAS NMR spectrum of SHCP-1.
        • fig. S9. 13C CP/MAS NMR spectrum of SHCP-2.
        • fig. S10. 13C CP/MAS NMR spectrum of SHCP-3.
        • fig. S11. 13C CP/MAS NMR spectrum of SHCP-3a.
        • fig. S12. 13C CP/MAS NMR spectrum of SHCP-4.
        • fig. S13. 13C CP/MAS NMR spectrum of SHCP-5.
        • fig. S14. 13C CP/MAS NMR spectrum of SHCP-6.
        • fig. S15. 1H NMR spectrum of dimer for SHCP-3 at 30°C (CDCl3 as solvent).
        • fig. S16. 13C NMR spectrum of dimer for SHCP-3 at 30°C (CDCl3 as solvent).
        • fig. S17. Thermogravimetric analysis of polymers.
        • fig. S18. SEM and TEM images of SHCP-1.
        • fig. S19. SEM and TEM images of SHCP-2.
        • fig. S20. SEM and TEM images of SHCP-3.
        • fig. S21. SEM and TEM images of SHCP-3a.
        • fig. S22. SEM and TEM images of SHCP-4.
        • fig. S23. SEM and TEM images of SHCP-5.
        • fig. S24. SEM and TEM images of SHCP-6.
        • fig. S25. PXRD images of SHCP-1 and SHCP-2.
        • fig. S26. PXRD images of SHCP-3 and SHCP-4.
        • fig. S27. PXRD images of SHCP-5 and SHCP-6.
        • fig. S28. PXRD image of polymer 3 (knitting by FDA as external cross-linker).
        • fig. S29. STEM images of SHCP-3, SHCP-6, and polymer 3.
        • fig. S30. Schematic representation of the three model TPB oligomers consisting of seven TPB units knitted by methylene.
        • fig. S31. Atomistic models for amorphous packings of the TPB oligomers.
        • fig. S32. Atomistic models for crystalline packing of the TPB molecules.
        • fig. S33. HR-TEM images of SHCP-3 nanosheets.
        • fig. S34. AFM data of SHCP-3 and SHCP-6 nanosheets.
        • table S1. The FTIR characteristic peak data of polymers.
        • table S2. The effect of molar ratio AlCl3 on the surface area and yield of polymers.
        • table S3. The effect of solvent and monomers on the pore size of polymers.

        Download PDF

        Files in this Data Supplement:

      Navigate This Article