Research ArticleAPPLIED SCIENCES AND ENGINEERING

# Layered microporous polymers by solvent knitting method

See allHide authors and affiliations

Vol. 3, no. 3, e1602610

### Tables

• Table 1 Composition and porosity of the polymers.
 Number Monomer Solvent SBET (m2 g−1)* SL (m2 g−1)† Pore volume (cm3 g−1)‡ MPV (cm3 g−1)§ SHCP-1 Benzene DCM 575 769 0.32 0.15 SHCP-2 Biphenyl DCM 1475 1944 0.79 0.43 SHCP-3 TPB DCM 1808 2407 1.08 0.48 SHCP-4 Benzene DCE 731 981 0.80 0.16 SHCP-5 Biphenyl DCE 536 724 0.35 0.12 SHCP-6 TPB DCE 935 1281 0.88 0.15 SHCP-3a|| TPB DCM 2525 3480 2.10 0.43 SHCP-3b¶ TPB DCM 3002 3896 2.33 0.42

*Surface area calculated from nitrogen adsorption isotherms at 77.3 K using the BET equation.

†Surface area calculated from nitrogen adsorption at 77.3 K using the Langmuir equation.

‡Pore volume calculated from nitrogen isotherm at 77.3 K and P/P0 = 0.995.

§Micropore volume calculated from the nitrogen isotherm at P/P0 = 0.050.

||The amount of Lewis acid is 12 molar ratio to TPB.

¶The amount of Lewis acid is 24 molar ratio to TPB.

• Table 2 Gas adsorption of the polymers.
 Number Monomer Solvent H2 uptake (mmol g−1; wt %)* CO2 uptake (mmol g−1; wt %)† CO2 uptake (mmol g−1; wt %)‡ SHCP-1 Benzene DCM 4.80 (0.96) 1.95 (8.6) 1.14 (5.0) SHCP-2 Biphenyl DCM 10.55 (2.11) 4.64 (20.4) 2.77 (12.2) SHCP-3 TPB DCM 10.70 (2.14) 4.84 (21.3) 2.64 (11.6) SHCP-3a TPB DCM 11.80 (2.36) 4.75 (20.9) 2.52 (11.1) SHCP-3b TPB DCM 12.40 (2.48) 4.82 (21.2) 2.57 (11.3) SHCP-4 Benzene DCE 5.90 (1.18) 2.11 (9.3) 1.23 (5.4) SHCP-5 Biphenyl DCE 4.40 (0.88) 2.02 (8.9) 1.18 (5.2) SHCP-6 TPB DCE 6.30 (1.26) 2.43 (10.7) 1.43 (6.3)

*H2 uptake determined volumetrically using a Micromeritics ASAP 2020 M analyzer at 1.13 bar and 77.3 K.

†CO2 uptake determined volumetrically using a Micromeritics ASAP 2020 M analyzer at 1.00 bar and 273.15 K.

‡CO2 uptake determined volumetrically using a Micromeritics ASAP 2020 M analyzer at 1.00 bar and 298.15 K.

### Supplementary Materials

fig. S1. FTIR spectrum of SHCP-1.

fig. S2. FTIR spectrum of SHCP-2.

fig. S3. FTIR spectrum of SHCP-3.

fig. S4. FTIR spectrum of SHCP-3a.

fig. S5. FTIR spectrum of SHCP-4.

fig. S6. FTIR spectrum of SHCP-5.

fig. S7. FTIR spectrum of SHCP-6.

fig. S8. 13C CP/MAS NMR spectrum of SHCP-1.

fig. S9. 13C CP/MAS NMR spectrum of SHCP-2.

fig. S10. 13C CP/MAS NMR spectrum of SHCP-3.

fig. S11. 13C CP/MAS NMR spectrum of SHCP-3a.

fig. S12. 13C CP/MAS NMR spectrum of SHCP-4.

fig. S13. 13C CP/MAS NMR spectrum of SHCP-5.

fig. S14. 13C CP/MAS NMR spectrum of SHCP-6.

fig. S15. 1H NMR spectrum of dimer for SHCP-3 at 30°C (CDCl3 as solvent).

fig. S16. 13C NMR spectrum of dimer for SHCP-3 at 30°C (CDCl3 as solvent).

fig. S17. Thermogravimetric analysis of polymers.

fig. S18. SEM and TEM images of SHCP-1.

fig. S19. SEM and TEM images of SHCP-2.

fig. S20. SEM and TEM images of SHCP-3.

fig. S21. SEM and TEM images of SHCP-3a.

fig. S22. SEM and TEM images of SHCP-4.

fig. S23. SEM and TEM images of SHCP-5.

fig. S24. SEM and TEM images of SHCP-6.

fig. S25. PXRD images of SHCP-1 and SHCP-2.

fig. S26. PXRD images of SHCP-3 and SHCP-4.

fig. S27. PXRD images of SHCP-5 and SHCP-6.

fig. S28. PXRD image of polymer 3 (knitting by FDA as external cross-linker).

fig. S29. STEM images of SHCP-3, SHCP-6, and polymer 3.

fig. S30. Schematic representation of the three model TPB oligomers consisting of seven TPB units knitted by methylene.

fig. S31. Atomistic models for amorphous packings of the TPB oligomers.

fig. S32. Atomistic models for crystalline packing of the TPB molecules.

fig. S33. HR-TEM images of SHCP-3 nanosheets.

fig. S34. AFM data of SHCP-3 and SHCP-6 nanosheets.

table S1. The FTIR characteristic peak data of polymers.

table S2. The effect of molar ratio AlCl3 on the surface area and yield of polymers.

table S3. The effect of solvent and monomers on the pore size of polymers.

• ## Supplementary Materials

This PDF file includes:

• fig. S1. FTIR spectrum of SHCP-1.
• fig. S2. FTIR spectrum of SHCP-2.
• fig. S3. FTIR spectrum of SHCP-3.
• fig. S4. FTIR spectrum of SHCP-3a.
• fig. S5. FTIR spectrum of SHCP-4.
• fig. S6. FTIR spectrum of SHCP-5.
• fig. S7. FTIR spectrum of SHCP-6.
• fig. S8. 13C CP/MAS NMR spectrum of SHCP-1.
• fig. S9. 13C CP/MAS NMR spectrum of SHCP-2.
• fig. S10. 13C CP/MAS NMR spectrum of SHCP-3.
• fig. S11. 13C CP/MAS NMR spectrum of SHCP-3a.
• fig. S12. 13C CP/MAS NMR spectrum of SHCP-4.
• fig. S13. 13C CP/MAS NMR spectrum of SHCP-5.
• fig. S14. 13C CP/MAS NMR spectrum of SHCP-6.
• fig. S15. 1H NMR spectrum of dimer for SHCP-3 at 30°C (CDCl3 as solvent).
• fig. S16. 13C NMR spectrum of dimer for SHCP-3 at 30°C (CDCl3 as solvent).
• fig. S17. Thermogravimetric analysis of polymers.
• fig. S18. SEM and TEM images of SHCP-1.
• fig. S19. SEM and TEM images of SHCP-2.
• fig. S20. SEM and TEM images of SHCP-3.
• fig. S21. SEM and TEM images of SHCP-3a.
• fig. S22. SEM and TEM images of SHCP-4.
• fig. S23. SEM and TEM images of SHCP-5.
• fig. S24. SEM and TEM images of SHCP-6.
• fig. S25. PXRD images of SHCP-1 and SHCP-2.
• fig. S26. PXRD images of SHCP-3 and SHCP-4.
• fig. S27. PXRD images of SHCP-5 and SHCP-6.
• fig. S28. PXRD image of polymer 3 (knitting by FDA as external cross-linker).
• fig. S29. STEM images of SHCP-3, SHCP-6, and polymer 3.
• fig. S30. Schematic representation of the three model TPB oligomers consisting of seven TPB units knitted by methylene.
• fig. S31. Atomistic models for amorphous packings of the TPB oligomers.
• fig. S32. Atomistic models for crystalline packing of the TPB molecules.
• fig. S33. HR-TEM images of SHCP-3 nanosheets.
• fig. S34. AFM data of SHCP-3 and SHCP-6 nanosheets.
• table S1. The FTIR characteristic peak data of polymers.
• table S2. The effect of molar ratio AlCl3 on the surface area and yield of polymers.
• table S3. The effect of solvent and monomers on the pore size of polymers.