Research ArticleSPINTRONICS

Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures

See allHide authors and affiliations

Science Advances  26 Jul 2017:
Vol. 3, no. 7, e1700518
DOI: 10.1126/sciadv.1700518


The valley degree of freedom in two-dimensional (2D) crystals recently emerged as a novel information carrier in addition to spin and charge. The intrinsic valley lifetime in 2D transition metal dichalcogenides (TMD) is expected to be markedly long due to the unique spin-valley locking behavior, where the intervalley scattering of the electron simultaneously requires a large momentum transfer to the opposite valley and a flip of the electron spin. However, the experimentally observed valley lifetime in 2D TMDs has been limited to tens of nanoseconds thus far. We report efficient generation of microsecond-long-lived valley polarization in WSe2/MoS2 heterostructures by exploiting the ultrafast charge transfer processes in the heterostructure that efficiently creates resident holes in the WSe2 layer. These valley-polarized holes exhibit near-unity valley polarization and ultralong valley lifetime: We observe a valley-polarized hole population lifetime of more than 1 μs and a valley depolarization lifetime (that is, intervalley scattering lifetime) of more than 40 μs at 10 K. The near-perfect generation of valley-polarized holes in TMD heterostructures, combined with ultralong valley lifetime, which is orders of magnitude longer than previous results, opens up new opportunities for novel valleytronics and spintronics applications.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances