Research ArticlePEROVSKITES

Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells

See allHide authors and affiliations

Science Advances  29 Sep 2017:
Vol. 3, no. 9, e1700841
DOI: 10.1126/sciadv.1700841
  • Fig. 1 Spectroscopic and structural characterization, photovoltaic performance, and stability test of CsPbI3 films.

    (A) Ultraviolet-visible (UV-vis) spectra of CsPbI3 films prepared from PbI2 + CsI and PbI2·xHI + CsI. a.u., arbitrary units. (B) XRD patterns of CsPbI3 films prepared from PbI2 + CsI and PbI2·xHI + CsI. (C) Photocurrent density–voltage (J-V) curve of α-CsPbI3–based PSCs. FF, fill factor. (D) XRD pattern and photos of fresh and aged (within a day) CsPbI3 films prepared from PbI2·xHI + CsI.

  • Fig. 2 Structural characterization and spectroscopic study of EDAPbI4 and CsPbI3·xEDAPbI4 films.

    (A) XRD pattern and (B) UV-vis spectrum of EDAPbI4 films. (C) XRD patterns and (D) UV-vis absorption spectra of CsPbI3·xEDAPbI4 (x = 0 to 0.05) perovskites.

  • Fig. 3 Effect of EDAPbI4 on the evolution of morphology of CsPbI3·xEDAPbI4.

    (A) AFM and (B) SEM images of perovskite films obtained from the CsPbI3·xEDAPbI4 additive precursor (x = 0, 0.0125, 0.025, and 0.05).

  • Fig. 4 Device characteristics for CsPbI3·xEDAPbI4 films.

    (A) Typical J-V curves of CsPbI3·xEDAPbI4 PSCs. (B) Stable current output at the maximum point of the champion CsPbI3·0.025EDAPbI4 PSC. (C) IPCE of the best solar cell based on the CsPbI3·0.025EDAPbI4 perovskite. (D) Histogram of device efficiencies of CsPbI3·0.025EDAPbI4 PSCs based on 32 cells from three batches.

  • Fig. 5 Stability test of CsPbI3·0.025EDAPbI4-based devices and films.

    (A) PCE of the champion PSC fabricated from CsPbI3·0.025EDAPbI4 as a function of storage time in a dark dry box. (B) XRD pattern and images of the CsPbI3·0.025EDAPbI4 film heated at 100°C in a dry box for 1 week.

  • Table 1 Effect of EDAPbI4 on the metrics of planar CsPbI3 PSCs (12 to 32 cells for each type).
    Precursor typeJSC (mA/cm2)VOC (V)FFη (%)
    Pure CsPbI311.33 (11.63 ± 1.55)1.04 (0.89 ± 0.09)0.65 (0.53 ± 0.06)7.66 (5.56 ± 1.16)
    CsPbI3·0.0125EDAPbI413.59 (13.31 ± 0.36)1.13 (1.09 ± 0.06)0.65 (0.56 ± 0.06)9.98 (8.22 ± 1.46)
    CsPbI3·0.025EDAPbI414.53 (14.05 ± 0.57)1.15 (1.13 ± 0.02)0.71 (0.64 ± 0.08)11.86 (10.42 ± 0.91)
    CsPbI3·0.05EDAPbI413.97 (13.17 ± 0.88)1.08 (1.06 ± 0.03)0.65 (0.61 ± 0.02)9.81 (8.58 ± 0.66)

Supplementary Materials

  • Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/3/9/e1700841/DC1

    fig. S1. Comparative analysis of crystal structures of PbI2·xHI and HPbI3.

    fig. S2. Morphology of EDAPbI4 films.

    fig. S3. Schematic structure of (110) layered 2D films.

    fig. S4. The organic compositions of CsPbI3·xEDAPbI4 films.

    fig. S5. Characterization of CsPbI3 + 0.05PbI2 with or without EDAI2.

    fig. S6. Effect of EDAPbI4 on the optical properties.

    fig. S7. Effect of EDAPbI4 on the transient photovoltage behavior.

    fig. S8. Hysteresis behavior of CsPbI3·0.025EDAPbI4-based device.

    fig. S9. Effect of EDAPbI4 on the phase stability of CsPbI3·xEDAPbI4 perovskite films.

    fig. S10. Phase stability of CsPbI3·0.025EDAPbI4 perovskite film under room temperature.

    fig. S11. Phase stability of CsPbI3·0.025EA2PbI4-based films.

    fig. S12. Device performance of CsPbI3·0.025EA2PbI4-based solar cell.

    fig. S13. Phase stability of CsPbI3·0.025BA2PbI4-based films.

    fig. S14. Effect of CsPbI3·0.025BDAPbI4 and CsPbI3·0.025EDBEPbI4 2D perovskite component on the evolution of morphology.

    fig. S15. Phase stability of CsPbI3·0.025BDAPbI4 and CsPbI3·0.025EDBEPbI4 films.

  • Supplementary Materials

    This PDF file includes:

    • fig. S1. Comparative analysis of crystal structures of PbI2·xHI and HPbI3.
    • fig. S2. Morphology of EDAPbI4 films.
    • fig. S3. Schematic structure of (110) layered 2D films.
    • fig. S4. The organic compositions of CsPbI3·xEDAPbI4 films.
    • fig. S5. Characterization of CsPbI3 + 0.05PbI2 with or without EDAI2.
    • fig. S6. Effect of EDAPbI4 on the optical properties.
    • fig. S7. Effect of EDAPbI4 on the transient photovoltage behavior.
    • fig. S8. Hysteresis behavior of CsPbI3·0.025EDAPbI4-based device.
    • fig. S9. Effect of EDAPbI4 on the phase stability of CsPbI3·xEDAPbI4 perovskite films.
    • fig. S10. Phase stability of CsPbI3·0.025EDAPbI4 perovskite film under room temperature.
    • fig. S11. Phase stability of CsPbI3·0.025EA2PbI4-based films.
    • fig. S12. Device performance of CsPbI3·0.025EA2PbI4-based solar cell.
    • fig. S13. Phase stability of CsPbI3·0.025BA2PbI4-based films.
    • fig. S14. Effect of CsPbI3·0.025BDAPbI4 and CsPbI3·0.025EDBEPbI4 2D perovskite component on the evolution of morphology.
    • fig. S15. Phase stability of CsPbI3·0.025BDAPbI4 and CsPbI3·0.025EDBEPbI4 films.

    Download PDF

    Files in this Data Supplement:

Navigate This Article