Abstract
The Verwey transition in Fe3O4, a complex structural phase transition concomitant with a jump in electrical conductivity by two orders of magnitude, has been a benchmark for charge ordering (CO) phenomena in mixed-valence transition metal materials. CO is of central importance, because it frequently competes with functional properties such as superconductivity or metallic ferromagnetism. However, the CO state in Fe3O4 turned out to be complex, and the mechanism of the Verwey transition remains controversial. We demonstrate an archetypical Verwey-type transition in an open p-shell anionic mixed-valence compound using complementary diffraction and spectroscopic techniques. In Cs4O6, a phase change from a cubic structure with a single crystallographic site for the molecular O2x− building units to a tetragonal structure with ordered superoxide O2− and peroxide O22− entities is accompanied by a drastic drop in electronic conductivity and molecular charge fluctuation rates. The simple CO pattern of molecular units and the lack of magnetic order suggest Cs4O6 as a model system for disentangling the complex interplay of charge, lattice, orbital, and spin degrees of freedom in Verwey-type CO processes.
- Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.