Discovery of log-periodic oscillations in ultraquantum topological materials

See allHide authors and affiliations

Science Advances  02 Nov 2018:
Vol. 4, no. 11, eaau5096
DOI: 10.1126/sciadv.aau5096


Quantum oscillations are usually the manifestation of the underlying physical nature in condensed matter systems. Here, we report a new type of log-periodic quantum oscillations in ultraquantum three-dimensional topological materials. Beyond the quantum limit (QL), we observe the log-periodic oscillations involving up to five oscillating cycles (five peaks and five dips) on the magnetoresistance of high-quality single-crystal ZrTe5, virtually showing the clearest feature of discrete scale invariance (DSI). Further, theoretical analyses show that the two-body quasi-bound states can be responsible for the DSI feature. Our work provides a new perspective on the ground state of topological materials beyond the QL.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances