Research ArticleBIOPHYSICS

Swimming bacteria power microspin cycles

See allHide authors and affiliations

Science Advances  19 Dec 2018:
Vol. 4, no. 12, eaau0125
DOI: 10.1126/sciadv.aau0125


Dense suspensions of swimming bacteria are living fluids, an archetype of active matter. For example, Bacillus subtilis confined within a disc-shaped region forms a persistent stable vortex that counterrotates at the periphery. Here, we examined Escherichia coli under similar confinement and found that these bacteria, instead, form microspin cycles: a single vortex that periodically reverses direction on time scales of seconds. Using experimental perturbations of the confinement geometry, medium viscosity, bacterial length, density, and chemotaxis pathway, we show that morphological alterations of the bacteria transition a stable vortex into a periodically reversing one. We develop a mathematical model based on single-cell biophysics that quantitatively recreates the dynamics of these vortices and predicts that density gradients power the reversals. Our results define how microbial physics drives the active behavior of dense bacterial suspensions and may allow one to engineer novel micromixers for biomedical and other microfluidic applications.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text