Research ArticleBIOPHYSICS

Saturation of charge-induced water alignment at model membrane surfaces

See allHide authors and affiliations

Science Advances  28 Mar 2018:
Vol. 4, no. 3, eaap7415
DOI: 10.1126/sciadv.aap7415


The electrical charge of biological membranes and thus the resulting alignment of water molecules in response to this charge are important factors affecting membrane rigidity, transport, and reactivity. We tune the surface charge density by varying lipid composition and investigate the charge-induced alignment of water molecules using surface-specific vibrational spectroscopy and molecular dynamics simulations. At low charge densities, the alignment of water increases proportionally to the charge. However, already at moderate, physiologically relevant charge densities, water alignment starts to saturate despite the increase in the nominal surface charge. The saturation occurs in both the Stern layer, directly at the surface, and in the diffuse layer, yet for distinctly different reasons. Our results show that the soft nature of the lipid interface allows for a marked reduction of the surface potential at high surface charge density via both interfacial molecular rearrangement and permeation of monovalent ions into the interface.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances