Research ArticlePHYSICS

Molecular engineering of Rashba spin-charge converter

See allHide authors and affiliations

Science Advances  23 Mar 2018:
Vol. 4, no. 3, eaar3899
DOI: 10.1126/sciadv.aar3899


In heterostructures with broken inversion symmetry, the electrons’ motion is coupled to their spin through interface-driven spin-orbit coupling: the Rashba effect. The Rashba effect enables the interconversion between spin and charge currents, offering a variety of novel spintronic phenomena and functionalities. However, despite the significant progress in Rashba physics, controlling the spin-charge conversion in metallic heterostructures remains a major challenge. We show that molecular self-assembly provides a way to engineer the Rashba spin-charge converters. We demonstrate that magnetoresistance and voltage generation originating from the spin-charge conversion in metallic heterostructures can be manipulated by decorating the surface with self-assembled organic monolayers through the cooperative molecular field effect. We also demonstrate reversible phototuning of the spin-charge conversion through light-driven molecular transformations using a molecule that can photoisomerize between the trans and cis states. These findings, with the almost-infinite chemical tunability of organic monolayers, pave the way toward molecular engineering of spin-orbit devices.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances