Evo-devo models of tooth development and the origin of hominoid molar diversity

See allHide authors and affiliations

Science Advances  11 Apr 2018:
Vol. 4, no. 4, eaar2334
DOI: 10.1126/sciadv.aar2334


The detailed anatomical features that characterize fossil hominin molars figure prominently in the reconstruction of their taxonomy, phylogeny, and paleobiology. Despite the prominence of molar form in human origins research, the underlying developmental mechanisms generating the diversity of tooth crown features remain poorly understood. A model of tooth morphogenesis—the patterning cascade model (PCM)—provides a developmental framework to explore how and why the varying molar morphologies arose throughout human evolution. We generated virtual maps of the inner enamel epithelium—an indelibly preserved record of enamel knot arrangement—in 17 living and fossil hominoid species to investigate whether the PCM explains the expression of all major accessory cusps. We found that most of the variation and evolutionary changes in hominoid molar morphology followed the general developmental rule shared by all mammals, outlined by the PCM. Our results have implications for the accurate interpretation of molar crown configuration in hominoid systematics.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances