Research ArticleBIOCHEMISTRY

Conformational ensembles of RNA oligonucleotides from integrating NMR and molecular simulations

See allHide authors and affiliations

Science Advances  18 May 2018:
Vol. 4, no. 5, eaar8521
DOI: 10.1126/sciadv.aar8521


RNA molecules are key players in numerous cellular processes and are characterized by a complex relationship between structure, dynamics, and function. Despite their apparent simplicity, RNA oligonucleotides are very flexible molecules, and understanding their internal dynamics is particularly challenging using experimental data alone. We show how to reconstruct the conformational ensemble of four RNA tetranucleotides by combining atomistic molecular dynamics simulations with nuclear magnetic resonance spectroscopy data. The goal is achieved by reweighting simulations using a maximum entropy/Bayesian approach. In this way, we overcome problems of current simulation methods, as well as in interpreting ensemble- and time-averaged experimental data. We determine the populations of different conformational states by considering several nuclear magnetic resonance parameters and point toward properties that are not captured by state-of-the-art molecular force fields. Although our approach is applied on a set of model systems, it is fully general and may be used to study the conformational dynamics of flexible biomolecules and to detect inaccuracies in molecular dynamics force fields.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances