Research ArticleOPTICS

Deconvolution of optical multidimensional coherent spectra

See allHide authors and affiliations

Science Advances  01 Jun 2018:
Vol. 4, no. 6, eaar7697
DOI: 10.1126/sciadv.aar7697


Optical coherent multidimensional spectroscopy is a powerful technique for unraveling complex and congested spectra by spreading them across multiple dimensions, removing the effects of inhomogeneity, and revealing underlying correlations. As the technique matures, the focus is shifting from understanding the technique itself to using it to probe the underlying dynamics in the system being studied. However, these dynamics can be difficult to discern because they are convolved with the nonlinear optical response of the system. Inspired by methods used to deblur images, we present a method for deconvolving the underlying dynamics from the optical response. To demonstrate the method, we extract the many-particle diffusion Green’s functions for excitons in a semiconductor quantum well from two-dimensional coherent spectra.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances