Soft mechanical metamaterials with unusual swelling behavior and tunable stress-strain curves

See allHide authors and affiliations

Science Advances  08 Jun 2018:
Vol. 4, no. 6, eaar8535
DOI: 10.1126/sciadv.aar8535


Soft adaptable materials that change their shapes, volumes, and properties in response to changes under ambient conditions have important applications in tissue engineering, soft robotics, biosensing, and flexible displays. Upon water absorption, most existing soft materials, such as hydrogels, show a positive volume change, corresponding to a positive swelling. By contrast, the negative swelling represents a relatively unusual phenomenon that does not exist in most natural materials. The development of material systems capable of large or anisotropic negative swelling remains a challenge. We combine analytic modeling, finite element analyses, and experiments to design a type of soft mechanical metamaterials that can achieve large effective negative swelling ratios and tunable stress-strain curves, with desired isotropic/anisotropic features. This material system exploits horseshoe-shaped composite microstructures of hydrogel and passive materials as the building blocks, which extend into a periodic network, following the lattice constructions. The building block structure leverages a sandwiched configuration to convert the hydraulic swelling deformations of hydrogel into bending deformations, thereby resulting in an effective shrinkage (up to around −47% linear strain) of the entire network. By introducing spatially heterogeneous designs, we demonstrated a range of unusual, anisotropic swelling responses, including those with expansion in one direction and, simultaneously, shrinkage along the perpendicular direction. The design approach, as validated by experiments, allows the determination of tailored microstructure geometries to yield desired length/area changes. These design concepts expand the capabilities of existing soft materials and hold promising potential for applications in a diverse range of areas.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances