Hidden CDW states and insulator-to-metal transition after a pulsed femtosecond laser excitation in layered chalcogenide 1T-TaS2−xSex

See allHide authors and affiliations

Science Advances  20 Jul 2018:
Vol. 4, no. 7, eaas9660
DOI: 10.1126/sciadv.aas9660


The hidden (H) quantum state in 1T-TaS2 has sparked considerable interest in the field of correlated electron systems. Here, we investigate ultrafast switches to stable H charge density wave (H-CDW) states observed in 1T-TaS2−xSex, with x = 0 and 0.5 crystals, upon excitation with a single femtosecond laser pulse. In situ cooling transmission electron microscopy observations, initiated by a single femtosecond laser pumping with a low fluence, reveal a clear transition from a commensurate CDW phase (qC) to a new CDW order with qH = (1 − δ)qC for the H-CDW state (δ = 1/9) accompanied by an evident phase separation. H-CDW domain relaxation then occurs and yields a stable metallic phase under a high-fluence excitation. Furthermore, electrical resistivity measurements show that the notable drop in x = 0 and 0.5 samples associated with the appearance of H-CDW states depend on laser fluence and temperature. These results potentially provide a new perspective on the photodoping mechanism for the emergence of H-CDW states in the 1T-TaS2−xSex family.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances