Research ArticleBIOCHEMISTRY

Radical chain repair: The hydroalkylation of polysubstituted unactivated alkenes

See allHide authors and affiliations

Science Advances  20 Jul 2018:
Vol. 4, no. 7, eaat6031
DOI: 10.1126/sciadv.aat6031


The concept of repair is widely used by nature to heal molecules such as proteins, lipids, sugars, and DNA that are damaged by hydrogen atom abstraction resulting from oxidative stress. We show that this strategy, rather undocumented in the field of synthetic organic chemistry, can be used in a radical chain reaction to enable notoriously intractable transformations. By overcoming the radical chain inhibitor properties of substituted alkenes, the radical-mediated hydroalkylation of mono-, di-, tri-, and even tetrasubstituted unactivated olefins could be performed under mild conditions. With a remarkable functional group tolerance, this reaction provides a general coupling method for the derivatization of olefin-containing natural products.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances