Research ArticlePHYSICS

Phase control in a spin-triplet SQUID

See allHide authors and affiliations

Science Advances  27 Jul 2018:
Vol. 4, no. 7, eaat9457
DOI: 10.1126/sciadv.aat9457

Abstract

It is now well established that a Josephson junction made from conventional spin-singlet superconductors containing ferromagnetic layers can carry spin-triplet supercurrent under certain conditions. The first experimental signature of that fact is the propagation of such supercurrent over long distances through strong ferromagnetic materials. Surprisingly, one of the most salient predictions of the theory has yet to be verified experimentally—namely, that a Josephson junction containing three magnetic layers with coplanar magnetizations should exhibit a ground-state phase shift of either zero or π depending on the relative orientations of those magnetizations. We demonstrate this property using Josephson junctions containing three different types of magnetic layers, chosen so that the magnetization of one layer can be switched by 180° without disturbing the other two. Phase-sensitive detection is accomplished using a superconducting quantum interference device, or SQUID. Such a phase-controllable junction could be used as the memory element in a fully superconducting computer.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text