Free-standing liquid membranes as unusual particle separators

See allHide authors and affiliations

Science Advances  24 Aug 2018:
Vol. 4, no. 8, eaat3276
DOI: 10.1126/sciadv.aat3276


Separation of substances is central to many industrial and medical processes ranging from wastewater treatment and purification to medical diagnostics. Conventional solid-based membranes allow particles below a critical size to pass through a membrane pore while inhibiting the passage of particles larger than that critical size; membranes that are capable of showing reversed behavior, that is, the passage of large particles and inhibition of small ones, are unusual in conventional engineering applications. Inspired by endocytosis and the self-healing properties of liquids, we show that free-standing membranes composed entirely of liquid can be designed to retain particles smaller than a critical size given the particle inertial properties. We further demonstrate that these membranes can be used for previously unachievable applications, including serving as particle barriers that allow macroscopic device access through the membrane (for example, open surgery) or as selective membranes inhibiting gas/vapor passage while allowing solids to pass through them (for example, waste/odor management).

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances