A readily programmable, fully reversible shape-switching material

See allHide authors and affiliations

Science Advances  24 Aug 2018:
Vol. 4, no. 8, eaat4634
DOI: 10.1126/sciadv.aat4634


Liquid crystalline (LC) elastomers (LCEs) enable large-scale reversible shape changes in polymeric materials; however, they require intensive, irreversible programming approaches in order to facilitate controllable actuation. We have implemented photoinduced dynamic covalent chemistry (DCC) that chemically anneals the LCE toward an applied equilibrium only when and where the light-activated DCC is on. By using light as the stimulus that enables programming, the dynamic bond exchange is orthogonal to LC phase behavior, enabling the LCE to be annealed in any LC phase or in the isotropic phase with various manifestations of this capability explored here. In a photopolymerizable LCE network, we report the synthesis, characterization, and exploitation of readily shape-programmable DCC-functional LCEs to create predictable, complex, and fully reversible shape changes, thus enabling the literal square peg to fit into a round hole.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances