Research ArticleBIOPHYSICS

Flagellar number governs bacterial spreading and transport efficiency

See allHide authors and affiliations

Science Advances  26 Sep 2018:
Vol. 4, no. 9, eaar6425
DOI: 10.1126/sciadv.aar6425

Abstract

Peritrichous bacteria synchronize and bundle their flagella to actively swim, while disruption of the bundle leads to a slow motility phase with a weak propulsion. It is still not known whether the number of flagella represents an evolutionary adaptation toward optimizing bacterial navigation. We study the swimming dynamics of differentially flagellated Bacillus subtilis strains in a quasi–two-dimensional system. We find that decreasing the number of flagella Nf reduces the average turning angle between two successive run phases and enhances the run time and the directional persistence of the run phase. As a result, having fewer flagella is beneficial for long-distance transport and fast spreading, while having a lot of flagella is advantageous for the processes that require a slower spreading, such as biofilm formation. We develop a two-state random walk model that incorporates spontaneous switchings between the states and yields exact analytical expressions for transport properties, in remarkable agreement with experiments. The results of numerical simulations based on our two-state model suggest that the efficiency of searching and exploring the environment is optimized at intermediate values of Nf. The optimal choice of Nf, for which the search time is minimized, decreases with increasing the size of the environment in which the bacteria swim.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances