Research ArticlePHYSICS

Disordered skyrmion phase stabilized by magnetic frustration in a chiral magnet

See allHide authors and affiliations

Science Advances  14 Sep 2018:
Vol. 4, no. 9, eaar7043
DOI: 10.1126/sciadv.aar7043


Magnetic skyrmions are vortex-like topological spin textures often observed to form a triangular-lattice skyrmion crystal in structurally chiral magnets with the Dzyaloshinskii-Moriya interaction. Recently, β-Mn structure–type Co-Zn-Mn alloys were identified as a new class of chiral magnet to host such skyrmion crystal phases, while β-Mn itself is known as hosting an elemental geometrically frustrated spin liquid. We report the intermediate composition system Co7Zn7Mn6 to be a unique host of two disconnected, thermal-equilibrium topological skyrmion phases; one is a conventional skyrmion crystal phase stabilized by thermal fluctuations and restricted to exist just below the magnetic transition temperature Tc, and the other is a novel three-dimensionally disordered skyrmion phase that is stable well below Tc. The stability of this new disordered skyrmion phase is due to a cooperative interplay between the chiral magnetism with the Dzyaloshinskii-Moriya interaction and the frustrated magnetism inherent to β-Mn.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances