Ionic decision-maker created as novel, solid-state devices

See allHide authors and affiliations

Science Advances  07 Sep 2018:
Vol. 4, no. 9, eaau2057
DOI: 10.1126/sciadv.aau2057


Decision-making is being performed frequently in areas of computation to obtain better performance in a wide variety of current intelligent activities. In practical terms, this decision-making must adapt to dynamic changes in environmental conditions. However, because of limited computational resources, adaptive decision-making is generally difficult to achieve using conventional computers. The ionic decision-maker reported here, which uses electrochemical phenomena, has excellent dynamic adaptabilities, as demonstrated by its ability to solve multiarmed bandit problems (MBPs) in which a gambler given a choice of slot machines must select the appropriate machines to play so as to maximize the total reward in a series of trials. Furthermore, our ionic decision-maker successfully solves dynamic competitive MBPs, which cause serious loss due to the collision of selfish users in communication networks. The technique used in our devices offers a shift toward decision-making using the motion of ions, an approach that could find myriad applications in computer science and technology, including artificial intelligence.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances