Research ArticlePHYSICS

Multidimensional spectroscopy with attosecond extreme ultraviolet and shaped near-infrared pulses

See allHide authors and affiliations

Science Advances  28 Sep 2018:
Vol. 4, no. 9, eaau3783
DOI: 10.1126/sciadv.aau3783


Dynamics following excitation with attosecond extreme ultraviolet (XUV) pulses arise from enormous numbers of accessible excited states, complicating the retrieval of state-specific time evolutions. We develop attosecond XUV multidimensional spectroscopy here to separate interfering pathways on a near-infrared (NIR) energy axis, retrieving single state dynamics in argon atoms in a two-dimensional (2D) XUV-NIR spectrum. In this experiment, we measure four-wave mixing signal arising from the interaction of XUV attosecond pulses centered around 15 eV with two few-cycle NIR pulses. The 2D spectrum is created by measuring the emitted XUV signal field spectrum while applying narrowband amplitude and phase modulations to one of the NIR pulses. Application of such a technique to systems of high dimensionality will provide for the observation of state-resolved pure electronic dynamics, in direct analogy to phenomena unraveled by multidimensional spectroscopies at optical frequencies.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances