Research ArticleIMMUNOLOGY

VSIG4 mediates transcriptional inhibition of Nlrp3 and Il-1β in macrophages

See allHide authors and affiliations

Science Advances  09 Jan 2019:
Vol. 5, no. 1, eaau7426
DOI: 10.1126/sciadv.aau7426


Hyperactivation of the NLRP3 inflammasome contributes to the pathogenesis of multiple diseases, but the mechanisms underlying transcriptional regulation of Nlrp3 remain elusive. We demonstrate here that macrophages lacking V-set and immunoglobulin domain–containing 4 (Vsig4) exhibit significant increases in Nlrp3 and Il-1β transcription, caspase-1 activation, pyroptosis, and interleukin-1β (IL-1β) secretion in response to NLRP3 inflammasome stimuli. VSIG4 interacts with MS4A6D in the formation of a surface signaling complex. VSIG4 occupancy triggers Ser232 and Ser235 phosphorylation in MS4A6D, leading to activation of JAK2-STAT3-A20 cascades that further results in nuclear factor κB suppression and Nlrp3 and Il-1β repression. Exaggerated NLRP3 and IL-1β expression in Vsig4−/− mice is accountable for deleterious disease severity in experimental autoimmune encephalomyelitis (EAE) and resistance to dextran sulfate sodium (DSS)–induced colitis. The agonistic VSIG4 antibodies (VG11), acting through NLRP3 and IL-1β suppression, show significant therapeutic efficacy in mouse EAE. These findings highlight VSIG4 as a prospective target for treating NLRP3-associated inflammatory disorders.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text