Electro-plasmonic nanoantenna: A nonfluorescent optical probe for ultrasensitive label-free detection of electrophysiological signals

See allHide authors and affiliations

Science Advances  18 Oct 2019:
Vol. 5, no. 10, eaav9786
DOI: 10.1126/sciadv.aav9786


Harnessing the unprecedented spatiotemporal resolution capability of light to detect electrophysiological signals has been the goal of scientists for nearly 50 years. Yet, progress toward that goal remains elusive due to lack of electro-optic translators that can efficiently convert electrical activity to high photon count optical signals. Here, we introduce an ultrasensitive and extremely bright nanoscale electric-field probe overcoming the low photon count limitations of existing optical field reporters. Our electro-plasmonic nanoantennas with drastically enhanced cross sections (~104 nm2 compared to typical values of ~10−2 nm2 for voltage-sensitive fluorescence dyes and ~1 nm2 for quantum dots) offer reliable detection of local electric-field dynamics with remarkably high sensitivities and signal–to–shot noise ratios (~60 to 220) from diffraction-limited spots. In our electro-optics experiments, we demonstrate high-temporal resolution electric-field measurements at kilohertz frequencies and achieved label-free optical recording of network-level electrogenic activity of cardiomyocyte cells with low-intensity light (11 mW/mm2).

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances