Research ArticleAPPLIED SCIENCES AND ENGINEERING

Mobile-surface bubbles and droplets coalesce faster but bounce stronger

See allHide authors and affiliations

Science Advances  25 Oct 2019:
Vol. 5, no. 10, eaaw4292
DOI: 10.1126/sciadv.aaw4292

Abstract

Enhancing the hydrodynamic interfacial mobility of bubbles and droplets in multiphase systems is expected to reduce the characteristic coalescence times and thereby affect the stability of gas or liquid emulsions that are of wide industrial and biological importance. However, by comparing the controlled collision of bubbles or water droplets with mobile or immobile liquid interfaces, in a pure fluorocarbon liquid, we demonstrate that collisions involving mobile surfaces result in a significantly stronger series of rebounds before the rapid coalescence event. The stronger rebound is explained by the lower viscous dissipation during collisions involving mobile surfaces. We present direct numerical simulations to confirm that the observed rebound is enhanced with increased surface mobility. These observations require a reassessment of the role of surface mobility for controlling the dynamic stability of gas or liquid emulsion systems relevant to a wide range of processes, from microfluidics and pharmaceuticals to food and crude oil processing.

This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances