Research ArticleBIOCHEMISTRY

Antiviral activity of a purine synthesis enzyme reveals a key role of deamidation in regulating protein nuclear import

See allHide authors and affiliations

Science Advances  09 Oct 2019:
Vol. 5, no. 10, eaaw7373
DOI: 10.1126/sciadv.aaw7373


Protein nuclear translocation is highly regulated and crucial for diverse biological processes. However, our understanding concerning protein nuclear import is incomplete. Here we report that a cellular purine synthesis enzyme inhibits protein nuclear import via deamidation. Employing human Kaposi’s sarcoma-associated herpesvirus (KSHV) to probe the role of protein deamidation, we identified a purine synthesis enzyme, phosphoribosylformylglycinamidine synthetase (PFAS) that inhibits KSHV transcriptional activation. PFAS deamidates the replication transactivator (RTA), a transcription factor crucial for KSHV lytic replication. Mechanistically, deamidation of two asparagines flanking a positively charged nuclear localization signal impaired the binding of RTA to an importin β subunit, thus diminishing RTA nuclear localization and transcriptional activation. Finally, RTA proteins of all gamma herpesviruses appear to be regulated by PFAS-mediated deamidation. These findings uncover an unexpected function of a metabolic enzyme in restricting viral replication and a key role of deamidation in regulating protein nuclear import.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances