CRISPR-Cas9–mediated therapeutic editing of Rpe65 ameliorates the disease phenotypes in a mouse model of Leber congenital amaurosis

See allHide authors and affiliations

Science Advances  30 Oct 2019:
Vol. 5, no. 10, eaax1210
DOI: 10.1126/sciadv.aax1210


Leber congenital amaurosis (LCA), one of the leading causes of childhood-onset blindness, is caused by autosomal recessive mutations in several genes including RPE65. In this study, we performed CRISPR-Cas9–mediated therapeutic correction of a disease-associated nonsense mutation in Rpe65 in rd12 mice, a model of human LCA. Subretinal injection of adeno-associated virus carrying CRISPR-Cas9 and donor DNA resulted in >1% homology-directed repair and ~1.6% deletion of the pathogenic stop codon in Rpe65 in retinal pigment epithelial tissues of rd12 mice. The a- and b-waves of electroretinograms were recovered to levels up to 21.2 ± 4.1% and 39.8 ± 3.2% of their wild-type mice counterparts upon bright stimuli after dark adaptation 7 months after injection. There was no definite evidence of histologic perturbation or tumorigenesis during 7 months of observation. Collectively, we present the first therapeutic correction of an Rpe65 nonsense mutation using CRISPR-Cas9, providing new insight for developing therapeutics for LCA.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances