Research ArticleELECTROCHEMISTRY

Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes

See allHide authors and affiliations

Science Advances  04 Oct 2019:
Vol. 5, no. 10, eaax4279
DOI: 10.1126/sciadv.aax4279

Abstract

Rechargeable aqueous zinc-ion batteries are promising candidates for large-scale energy storage but are plagued by the lack of cathode materials with both excellent rate capability and adequate cycle life span. We overcome this barrier by designing a novel hierarchically porous structure of Zn-vanadium oxide material. This Zn0.3V2O5·1.5H2O cathode delivers a high specific capacity of 426 mA·h g−1 at 0.2 A g−1 and exhibits an unprecedented superlong-term cyclic stability with a capacity retention of 96% over 20,000 cycles at 10 A g−1. Its electrochemical mechanism is elucidated. The lattice contraction induced by zinc intercalation and the expansion caused by hydronium intercalation cancel each other and allow the lattice to remain constant during charge/discharge, favoring cyclic stability. The hierarchically porous structure provides abundant contact with electrolyte, shortens ion diffusion path, and provides cushion for relieving strain generated during electrochemical processes, facilitating both fast kinetics and long-term stability.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text