Research ArticleENGINEERING

Soft nanocomposite electroadhesives for digital micro- and nanotransfer printing

See allHide authors and affiliations

Science Advances  11 Oct 2019:
Vol. 5, no. 10, eaax4790
DOI: 10.1126/sciadv.aax4790

Abstract

Automated handling of microscale objects is essential for manufacturing of next-generation electronic systems. Yet, mechanical pick-and-place technologies cannot manipulate smaller objects whose surface forces dominate over gravity, and emerging microtransfer printing methods require multidirectional motion, heating, and/or chemical bonding to switch adhesion. We introduce soft nanocomposite electroadhesives (SNEs), comprising sparse forests of dielectric-coated carbon nanotubes (CNTs), which have electrostatically switchable dry adhesion. SNEs exhibit 40-fold lower nominal dry adhesion than typical solids, yet their adhesion is increased >100-fold by applying 30 V to the CNTs. We characterize the scaling of adhesion with surface morphology, dielectric thickness, and applied voltage and demonstrate digital transfer printing of films of Ag nanowires, polymer and metal microparticles, and unpackaged light-emitting diodes.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text