Electrically controlled liquid crystal elastomer–based soft tubular actuator with multimodal actuation

See allHide authors and affiliations

Science Advances  11 Oct 2019:
Vol. 5, no. 10, eaax5746
DOI: 10.1126/sciadv.aax5746


Soft tubular actuators can be widely found both in nature and in engineering applications. The benefits of tubular actuators include (i) multiple actuation modes such as contraction, bending, and expansion; (ii) facile fabrication from a planar sheet; and (iii) a large interior space for accommodating additional components or for transporting fluids. Most recently developed soft tubular actuators are driven by pneumatics, hydraulics, or tendons. Each of these actuation modes has limitations including complex fabrication, integration, and nonuniform strain. Here, we design and construct soft tubular actuators using an emerging artificial muscle material that can be easily patterned with programmable strain: liquid crystal elastomer. Controlled by an externally applied electrical potential, the tubular actuator can exhibit multidirectional bending as well as large (~40%) homogenous contraction. Using multiple tubular actuators, we build a multifunctional soft gripper and an untethered soft robot.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text